|本期目录/Table of Contents|

[1]丁强,向继武,卜峰,等.庆大霉素生产菌种育种研究进展[J].武汉工程大学学报,2025,47(06):641-646.[doi:10.19843/j.cnki.CN42-1779/TQ.202508003?]
 DING Qiang,XIANG Jiwu,BU Feng,et al.Advances in breeding technologies for gentamicin-producing strains[J].Journal of Wuhan Institute of Technology,2025,47(06):641-646.[doi:10.19843/j.cnki.CN42-1779/TQ.202508003?]
点击复制

庆大霉素生产菌种育种研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年06期
页码:
641-646
栏目:
现代大化工
出版日期:
2025-12-31

文章信息/Info

Title:
Advances in breeding technologies for gentamicin-producing strains
文章编号:
1674 - 2869(2025)06 - 0641 - 06
作者:
丁强1向继武1卜峰1谭小芳1谭蓉1杨倩2刘佳鑫2程波*2周平*3龚波*3
1.宜昌三峡制药有限公司,湖北 宜昌 443000;
2.武汉工程大学环境生态与生物工程学院,湖北 武汉 430205;
3.湖北省兽药监察所,湖北 武汉 430070

Author(s):
1. Yichang Sanxia Pharmaceutical Co.Ltd.,Yichang 443000,China;
2.School of Environmental Ecology and Biological Engineering,Wuhan Institute of Technology,Wuhan 430205,China;
3.Hubei Provincial Institute for Veterinary Drug Control,Wuhan 430070,China

关键词:
庆大霉素诱变选育基因工程
Keywords:
gentamicin mutagenesis breeding genetic engineering
分类号:
Q81
DOI:
10.19843/j.cnki.CN42-1779/TQ.202508003?
文献标志码:
A
摘要:
系统梳理了庆大霉素生产菌种育种技术的发展脉络与研究现状。详细比较了传统诱变育种与现代基因工程育种两大技术体系。传统育种方面,物理诱变(紫外线、离子束注入、ARTP技术)与化学诱变通过诱导DNA突变提高菌种产量,其中紫外诱变使摇瓶效价提高34.3%,ARTP诱变使效价从1 547 U/mL提升至2 280 U/mL。现代基因工程领域,基因敲除技术通过阻断特定代谢途径将庆大霉素C1a组分比例从6.5%提升至94.0%;CRISPR/Cas9基因编辑技术实现了对甲基转移酶和糖基转移酶的精准调控;DNA改组技术则通过同源基因重组为开发新型抗生素衍生物提供了技术路径。当前庆大霉素菌种选育已从随机诱变转向理性设计阶段,未来发展方向将聚焦于合成生物学、代谢工程与人工智能预测模型的深度融合,通过全局代谢网络解析实现庆大霉素等次级代谢产物的高效生物制造。
Abstract:
This review systematically outlines the development and current research status of breeding technologies for gentamicin-producing strains, providing a detailed comparison between traditional mutagenesis breeding and modern genetic engineering approaches. In traditional breeding methods, physical mutagenesis (including ultraviolet irradiation, ion beam implantation, and ARTP) and chemical mutagenesis enhance strain yield by inducing DNA mutations. Specifically, UV mutagenesis increases shake-flask titer by 34.3%, while ARTP mutagenesis improves the titer from 1 547 U/mL to 2 280 U/mL. In modern genetic engineering, gene knockout technology successfully increases the proportion of the gentamicin C1a component from 6.5% to 94.0% by blocking specific metabolic pathways; CRISPR/Cas9 gene editing enables precise regulation of methyltransferases and glycosyltransferases; and DNA shuffling technology provides a pathway for developing novel antibiotic derivatives through homologous gene recombination. The review demonstrates that gentamicin strain breeding has transitioned from random mutagenesis to rational design. Future developments will focus on the deep integration of synthetic biology, metabolic engineering, and AI predictive models to achieve efficient bio-manufacturing of secondary metabolites like gentamicin through global metabolic network analysis.

参考文献/References:

[1] WEINSTEIN M J, LUEDEMANN G M, ODEN E M, et al. Gentamicin, 1 a new antibiotic complex from micromonospora [J]. Journal of Medicinal Chemistry, 1963, 6(4): 463-464.
[2] KONDO S. Gentamicin: 30 years of its clinical use[J]. Journal of Antibiotics, 1991, 44(7):741-747.
[3] YOSHIZAWA S, FOURMY D, PUGLISI J D. Structural origins of gentamicin antibiotic action [J]. The EMBO Journal, 1998, 17(22): 6437-6448.
[4] JAKOBSEN L, SANDVANG D, JENSEN V F, et al. Gentamicin susceptibility in Escherichia coli related to the genetic background: problems with breakpoints [J]. Clinical Microbiology and Infection, 2007, 13(8): 830-832.
[5] KHAREL M K, BASNET D B, LEE H C, et al. Molecular cloning and characterization of a 2-deoxystreptamine biosynthetic gene cluster in gentamicin-producing micromonospora echinospora ATCC15835 [J]. Molecules and Cells, 2004, 18(1): 71-78.
[6] PARK J W, HONG C S, WEN Y H,et al. Biosynthesis of gentamicin: the roles of genD1 and genD2 in methylation[J]. ACS Chemical Biology, 2016, 11(8): 2114-2122.
[7] XU F, ZHANG X Y, LIU L, et al. Engineering the methyltransferase through inactivation of the genK and genL leads to a significant increase of gentamicin C1a production in an industrial strain of Micromonospora echinospora 49-92S [J]. Bioprocess and Biosystems Engineering, 2022, 45(10): 1693-1703.
[8] 蒋明星, 鲁涛, 文孟良. 庆大霉素的生物合成[J]. 中国抗生素杂志, 2016, 41(1): 16-25.
[9] LI S C, GUO J H, REVA A, et al. Methyltransferases of gentamicin biosynthesis [J]. PNAS,2018, 115(6): 1340-1345.
[10] KIM H J, LIU Y N, MCCARTY R M, et al. Reaction catalyzed by GenK, a cobalamin-dependent radical S-adenosyl-l-methionine methyltransferase in the biosynthetic pathway of gentamicin, proceeds with retention of configuration [J]. Journal of the American Chemical Society,2017,139(45): 16084- 16087.
[11] HONG W R, YAN L B. Identification of gntK, a gene required for the methylation of purpurosamine C-6’ in gentamicin biosynthesis [J]. The Journal of General and Applied Microbiology, 2012, 58(5): 349-356.
[12] GUO J H, HUANG F L, HUANG C, et al. Specificity and promiscuity at the branch point in gentamicin biosynthesis [J]. Chemistry & Biology, 2014, 21(5): 608-618.
[13] GU Y W, NI X P, REN J, et al. Biosynthesis of epimers C2 and C2a in the gentamicin C complex [J]. ChemBioChem, 2015, 16(13): 1933-1942.
[14] HUANG C, HUANG F L, MOISON E, et al. Delineating the biosynthesis of gentamicin X2, the common precursor of the gentamicin C antibiotic complex [J]. Chemistry & Biology, 2015, 22(2): 251-261.
[15] LI S C, DOS SANTOS BURY P, HUANG F L, et al. Mechanistic insights into dideoxygenation in gentamicin biosynthesis [J]. ACS Catalysis, 2021, 11(19): 12274-12283.
[16] 陈海敏, 孙菲, 袁源, 等. 紫外诱变选育巴弗洛霉素A1高产菌株及其培养基优化[J]. 生物技术通报, 2025, 41(3): 51-61.
[17] 杨丽. 庆大霉素产生菌的紫外线诱变育种及发酵条件研究[J]. 青岛科技大学学报(自然科学版),1999(1): 48-51.
[18] 李彦. 离子注入庆大霉素产生菌的诱变实验研究[D]. 天津:天津师范大学, 1999.
[19] 刘峰, 傅袆, 颜辉灿. 12C离子束辐射选育庆大霉素高产菌株及其罐发酵水平[J]. 中国抗生素杂志, 2003, 28(9): 517-519, 554.
[20] 赵洪英. N注入庆大霉素产生菌诱变育种[D]. 天津: 天津师范大学, 1999.
[21] 赵洪英, 李彦, 裴鸿娇, 等. N+离子束注入庆大霉素产生菌诱变效应研究[J]. 天津理工学院学报, 2001, 17(1): 14-17.
[22] 时圣凤, 王莉莉, 毛宁, 等. 一种绛红色小单孢菌原生质体ARTP诱变及融合筛选高产菌株的方法: 202310949665[P]. 2024-06-14.
[23] 邓磊, 张豪, 郑穗平. 常压室温等离子体诱变与微生物液滴培养系统联用筛选L-组氨酸产生菌[J]. 中国酿造, 2021, 40(2): 53-58.
[24] 葛祥斌, 徐鹏, 刘阳, 等. 绛红小单孢菌突变株CH20190225-107的选育与鉴定[J]. 中国抗生素杂志, 2022, 47(1): 35-39.
[25] 晋锦锦,陈兰英. 化学诱变剂的作用机理[C]//中国环境诱变剂学会致突变、致畸学术讨论会论文集. 2014:41-43.
[26] 张家骊, 杨绪明, 李江华, 等. 庆大霉素优良高产菌株的诱变选育研究[J]. 药物生物技术, 2008, 15(4): 270-274.
[27] 陈孝康, 沈仁权, 盛祖嘉, 等. 庆大霉素组分比例合适的菌株A2及其选育: CN86108119[P]. 1988-06-15.
[28] 葛祥斌, 王玉红, 姜桂香, 等. 耐高浓度庆大霉素菌种的选育[J]. 中国抗生素杂志, 2002, 27(5): 311-312.
[29] 吴健, 张少平, 戴桂馥, 等. 庆大霉素高产菌株的抗性方法选育[J]. 信阳师范学院学报(自然科学版), 2007, 20(2): 191-194.
[30] 夏焕章, 倪现朴, 孙振鹏. 一种产生庆大霉素B的基因工程菌及其构建方法: 201510632886[P]. 2020-08-14.
[31] 黄建峰, 周剑. 氨基糖苷类药物生物合成基因研究新进展[J]. 海峡药学,2012(4): 14-17.
[32] 孟雨菡, 刘景晶, 顾觉奋. 基因工程方法用于抗生素增产的研究进展[J]. 国外医药(抗生素分册), 2009, 30(5): 193-197, 204.
[33] 王建国. 基因工程改造放线菌[J]. 生物制品快讯,2002(12): 14-15.
[34] 简心韵, 邓子新, 孙宇辉. 氨基糖苷抗生素庆大霉素: 基础研究的新进展及应用研究的新潜力[J]. 生物工程学报, 2015, 31(6): 829-844.
[35] 夏焕章, 翟航. 放线菌次级代谢产物研究进展[J]. 微生物学杂志, 2023, 43(4): 1-9.
[36] 连榕.庆大霉素生物合成特色基因克隆与表达的研究[D].福州:福州大学,2018.
[37] 常莹莹. 庆大霉素B合成基因genR和genS的发现和高效表达以实现其高产[D]. 武汉:武汉大学,2019.
[38] WEI Z, SHI X N, LIAN R, et al. Exclusive produc-tion of gentamicin C1a from micromonospora purpurea by metabolic engineering [J]. Antibiotics, 2019, 8(4): 267.
[39] 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023(4),4: 720-737.
[40] 刘贇, 邱文青. 基于CRISPR/cas9和APEX2系统识别特异性位点互作RNA的方法: CN201811461038.3[P]. 2019-07-02.
[41] LI D, LI H, NI X P, et al. Construction of a gentamicin C1a-overproducing strain of Micromonospora purpurea by inactivation of the gacD gene [J]. Microbiological Research, 2013, 168(5): 263-267.
[42] WU Z, GAO W L, ZHOU S T, et al. Improving gentamicin B and gentamicin C1a production by engineering the glycosyltransferases that transfer primary metabolites into secondary metabolites biosynthesis [J]. Microbiological Research, 2017, 203: 40-46.
[43] 胡光星, 郭美锦, 储炬, 等. DNA改组技术发展与应用[J]. 中国生物工程杂志, 2002, 22(3): 9-12.
[44] LEJA K, MYSZKA K, CZACZYK K. Genome shuffling: a method to improve biotechnological processes [J]. BioTechnologia, 2011, 92(4): 345-351.
[45] 席文辉. 链霉菌SH——62中抗微生物活性天然产物的基因组挖掘[D]. 武汉: 华中农业大学, 2024.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2025-08-06
基金项目:湖北省重点研发计划项目(2023BBB120)
作者简介:丁 强,硕士,高级工程师。Email:315495889@qq.com
*通信作者:程 波,博士,副教授。Email:lt_bb@wit.edu.cn
周 平,硕士,中级畜牧师。Email:18802789909@163.com
龚 波,学士,兽医师。Email:18007130708@163.com

更新日期/Last Update: 2026-01-06