[1] WEINSTEIN M J, LUEDEMANN G M, ODEN E M, et al. Gentamicin, 1 a new antibiotic complex from micromonospora [J]. Journal of Medicinal Chemistry, 1963, 6(4): 463-464.
[2] KONDO S. Gentamicin: 30 years of its clinical use[J]. Journal of Antibiotics, 1991, 44(7):741-747.
[3] YOSHIZAWA S, FOURMY D, PUGLISI J D. Structural origins of gentamicin antibiotic action [J]. The EMBO Journal, 1998, 17(22): 6437-6448.
[4] JAKOBSEN L, SANDVANG D, JENSEN V F, et al. Gentamicin susceptibility in Escherichia coli related to the genetic background: problems with breakpoints [J]. Clinical Microbiology and Infection, 2007, 13(8): 830-832.
[5] KHAREL M K, BASNET D B, LEE H C, et al. Molecular cloning and characterization of a 2-deoxystreptamine biosynthetic gene cluster in gentamicin-producing micromonospora echinospora ATCC15835 [J]. Molecules and Cells, 2004, 18(1): 71-78.
[6] PARK J W, HONG C S, WEN Y H,et al. Biosynthesis of gentamicin: the roles of genD1 and genD2 in methylation[J]. ACS Chemical Biology, 2016, 11(8): 2114-2122.
[7] XU F, ZHANG X Y, LIU L, et al. Engineering the methyltransferase through inactivation of the genK and genL leads to a significant increase of gentamicin C1a production in an industrial strain of Micromonospora echinospora 49-92S [J]. Bioprocess and Biosystems Engineering, 2022, 45(10): 1693-1703.
[8] 蒋明星, 鲁涛, 文孟良. 庆大霉素的生物合成[J]. 中国抗生素杂志, 2016, 41(1): 16-25.
[9] LI S C, GUO J H, REVA A, et al. Methyltransferases of gentamicin biosynthesis [J]. PNAS,2018, 115(6): 1340-1345.
[10] KIM H J, LIU Y N, MCCARTY R M, et al. Reaction catalyzed by GenK, a cobalamin-dependent radical S-adenosyl-l-methionine methyltransferase in the biosynthetic pathway of gentamicin, proceeds with retention of configuration [J]. Journal of the American Chemical Society,2017,139(45): 16084- 16087.
[11] HONG W R, YAN L B. Identification of gntK, a gene required for the methylation of purpurosamine C-6’ in gentamicin biosynthesis [J]. The Journal of General and Applied Microbiology, 2012, 58(5): 349-356.
[12] GUO J H, HUANG F L, HUANG C, et al. Specificity and promiscuity at the branch point in gentamicin biosynthesis [J]. Chemistry & Biology, 2014, 21(5): 608-618.
[13] GU Y W, NI X P, REN J, et al. Biosynthesis of epimers C2 and C2a in the gentamicin C complex [J]. ChemBioChem, 2015, 16(13): 1933-1942.
[14] HUANG C, HUANG F L, MOISON E, et al. Delineating the biosynthesis of gentamicin X2, the common precursor of the gentamicin C antibiotic complex [J]. Chemistry & Biology, 2015, 22(2): 251-261.
[15] LI S C, DOS SANTOS BURY P, HUANG F L, et al. Mechanistic insights into dideoxygenation in gentamicin biosynthesis [J]. ACS Catalysis, 2021, 11(19): 12274-12283.
[16] 陈海敏, 孙菲, 袁源, 等. 紫外诱变选育巴弗洛霉素A1高产菌株及其培养基优化[J]. 生物技术通报, 2025, 41(3): 51-61.
[17] 杨丽. 庆大霉素产生菌的紫外线诱变育种及发酵条件研究[J]. 青岛科技大学学报(自然科学版),1999(1): 48-51.
[18] 李彦. 离子注入庆大霉素产生菌的诱变实验研究[D]. 天津:天津师范大学, 1999.
[19] 刘峰, 傅袆, 颜辉灿. 12C离子束辐射选育庆大霉素高产菌株及其罐发酵水平[J]. 中国抗生素杂志, 2003, 28(9): 517-519, 554.
[20] 赵洪英. N注入庆大霉素产生菌诱变育种[D]. 天津: 天津师范大学, 1999.
[21] 赵洪英, 李彦, 裴鸿娇, 等. N+离子束注入庆大霉素产生菌诱变效应研究[J]. 天津理工学院学报, 2001, 17(1): 14-17.
[22] 时圣凤, 王莉莉, 毛宁, 等. 一种绛红色小单孢菌原生质体ARTP诱变及融合筛选高产菌株的方法: 202310949665[P]. 2024-06-14.
[23] 邓磊, 张豪, 郑穗平. 常压室温等离子体诱变与微生物液滴培养系统联用筛选L-组氨酸产生菌[J]. 中国酿造, 2021, 40(2): 53-58.
[24] 葛祥斌, 徐鹏, 刘阳, 等. 绛红小单孢菌突变株CH20190225-107的选育与鉴定[J]. 中国抗生素杂志, 2022, 47(1): 35-39.
[25] 晋锦锦,陈兰英. 化学诱变剂的作用机理[C]//中国环境诱变剂学会致突变、致畸学术讨论会论文集. 2014:41-43.
[26] 张家骊, 杨绪明, 李江华, 等. 庆大霉素优良高产菌株的诱变选育研究[J]. 药物生物技术, 2008, 15(4): 270-274.
[27] 陈孝康, 沈仁权, 盛祖嘉, 等. 庆大霉素组分比例合适的菌株A2及其选育: CN86108119[P]. 1988-06-15.
[28] 葛祥斌, 王玉红, 姜桂香, 等. 耐高浓度庆大霉素菌种的选育[J]. 中国抗生素杂志, 2002, 27(5): 311-312.
[29] 吴健, 张少平, 戴桂馥, 等. 庆大霉素高产菌株的抗性方法选育[J]. 信阳师范学院学报(自然科学版), 2007, 20(2): 191-194.
[30] 夏焕章, 倪现朴, 孙振鹏. 一种产生庆大霉素B的基因工程菌及其构建方法: 201510632886[P]. 2020-08-14.
[31] 黄建峰, 周剑. 氨基糖苷类药物生物合成基因研究新进展[J]. 海峡药学,2012(4): 14-17.
[32] 孟雨菡, 刘景晶, 顾觉奋. 基因工程方法用于抗生素增产的研究进展[J]. 国外医药(抗生素分册), 2009, 30(5): 193-197, 204.
[33] 王建国. 基因工程改造放线菌[J]. 生物制品快讯,2002(12): 14-15.
[34] 简心韵, 邓子新, 孙宇辉. 氨基糖苷抗生素庆大霉素: 基础研究的新进展及应用研究的新潜力[J]. 生物工程学报, 2015, 31(6): 829-844.
[35] 夏焕章, 翟航. 放线菌次级代谢产物研究进展[J]. 微生物学杂志, 2023, 43(4): 1-9.
[36] 连榕.庆大霉素生物合成特色基因克隆与表达的研究[D].福州:福州大学,2018.
[37] 常莹莹. 庆大霉素B合成基因genR和genS的发现和高效表达以实现其高产[D]. 武汉:武汉大学,2019.
[38] WEI Z, SHI X N, LIAN R, et al. Exclusive produc-tion of gentamicin C1a from micromonospora purpurea by metabolic engineering [J]. Antibiotics, 2019, 8(4): 267.
[39] 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023(4),4: 720-737.
[40] 刘贇, 邱文青. 基于CRISPR/cas9和APEX2系统识别特异性位点互作RNA的方法: CN201811461038.3[P]. 2019-07-02.
[41] LI D, LI H, NI X P, et al. Construction of a gentamicin C1a-overproducing strain of Micromonospora purpurea by inactivation of the gacD gene [J]. Microbiological Research, 2013, 168(5): 263-267.
[42] WU Z, GAO W L, ZHOU S T, et al. Improving gentamicin B and gentamicin C1a production by engineering the glycosyltransferases that transfer primary metabolites into secondary metabolites biosynthesis [J]. Microbiological Research, 2017, 203: 40-46.
[43] 胡光星, 郭美锦, 储炬, 等. DNA改组技术发展与应用[J]. 中国生物工程杂志, 2002, 22(3): 9-12.
[44] LEJA K, MYSZKA K, CZACZYK K. Genome shuffling: a method to improve biotechnological processes [J]. BioTechnologia, 2011, 92(4): 345-351.
[45] 席文辉. 链霉菌SH——62中抗微生物活性天然产物的基因组挖掘[D]. 武汉: 华中农业大学, 2024.