|本期目录/Table of Contents|

[1]何盈杉,肖利芳.一种灰色残差修正模型的算法设计 [J].武汉工程大学学报,2025,47(06):647-652.[doi:10.19843/j.cnki.CN42-1779/TQ.202406017]
 HE Yingshan,XIAO Lifang.Algorithm design of a grey residual correction model [J].Journal of Wuhan Institute of Technology,2025,47(06):647-652.[doi:10.19843/j.cnki.CN42-1779/TQ.202406017]
点击复制

一种灰色残差修正模型的算法设计
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年06期
页码:
647-652
栏目:
智能制造
出版日期:
2025-12-31

文章信息/Info

Title:
Algorithm design of a grey residual correction model
文章编号:
1674 - 2869(2025)06 - 0647 - 06
作者:
何盈杉12肖利芳12
1. 武汉工程大学计算机科学与工程学院,湖北 武汉 430205;
2. 智能机器人湖北省重点实验室(武汉工程大学),湖北 武汉 430205

Author(s):
HE Yingshan12XIAO Lifang12
1. School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. Hubei Key Laboratory of Intelligent Robot(Wuhan Institute of Technology), Wuhan 430205, China

关键词:
GM(11)模型残差响应函数灰色预测
Keywords:
GM(11) model residual response function grey prediction
分类号:
N941.5
DOI:
10.19843/j.cnki.CN42-1779/TQ.202406017
文献标志码:
A
摘要:
为提高传统灰色预测模型GM(1,1)的预测精度,提出了一种灰色残差修正模型REGM(1,1)。首先利用GM(1,1)模型生成的响应函数序列与原始数据累加序列之间的残差,构建残差累加序列,并基于此推导出白化微分方程作为响应函数式。然后利用GM(1,1)模型的响应函数值对残差预测函数值进行修正,得到残差修正序列,最后通过累减还原获得预测结果。2006—2017年美国电力生产指数的实证研究表明,REGM(1,1)模型的平均残差和平均相对误差分别为4.083 9×10-4与3.712 2×10-6,平均相对误差相较于GM(1,1)模型降低了99.99%,较傅里叶残差修正模型FGM(1,1)降低了97.93%,预测精度和稳健性显著提升。REGM(1,1)模型通过分析并修正残差累加序列,提升了对未来数据变动的预测能力,在能源管理、经济预测、工业过程优化等领域具有重要应用价值,尤其可为电力系统调度、行业能耗监测等场景的精准预测与决策支持提供新方法。
Abstract:
To enhance the prediction accuracy of the traditional grey prediction model GM(1,1), a grey residual correction model REGM(1,1) was proposed in this paper. First,the residuals between the response function sequence generated by GM(1,1) and the cumulative sequence of the original data were used to construct a residual cumulative sequence, and based on this, the whitening differential equation was derived as the response function formula. Then, the response function values of GM(1,1) were used to adjust the residual prediction function values, yielding a residual-corrected sequence. Final predictions were made through cumulative reduction. Empirical analysis of the U.S. electricity production index from 2006 to 2017 demonstrated that REGM(1,1) achieves average residuals and relative errors of 4.083 9×10-4 and 3.712 2×10-6, respectively. Compared with GM(1,1) and the Fourier residual-corrected model FGM(1,1), the average relative errors are reduced by 99.99%, and 97.93%, respectively, confirming significant accuracy and robustness improvements. The REGM(1,1) model can improve the prediction of future data changes by analysing and correcting the residual cumulative series, and holds substantial application value in fields of energy management, economic forecasting, and industrial process optimization, particularly offering a novel methodology for precise prediction and decision-making support in areas of power system dispatching and cross-sector energy consumption monitoring.

参考文献/References:

[1] 刘思峰,邓聚龙.GM(1,1)模型的适用范围[J].系统工程理论与实践,2000(5):121-124.
[2] 戴文战,熊伟,杨爱萍.基于函数cot(xα)变换及背景值优化的灰色建模[J].浙江大学学报(工学版) ,2010, 44(7):1368-1372.
[3] 郑锋,魏勇.提高灰建模数据列光滑度的一种新方法[J].统计与决策,2007(18):37-38.
[4] 李翠凤,戴文战.基于函数cot x变换的灰色建模方法[J].系统工程,2005, 23(3):110-114.
[5] 崔立志,刘思峰.基于数据变换技术的灰色预测模型[J].系统工程,2010, 28(5):104-107.
[6] 李福琴,刘建国.数据变换提高灰色预测模型精度的研究[J].统计与决策,2008(6):15-17.
[7] 王正新,党耀国,裴玲玲.缓冲算子的光滑性[J].系统工程理论与实践,2010,30(9):1643-1649.
[8] 郭金海,肖新平,杨锦伟.函数变换对灰色模型光滑度和精度的影响[J].控制与决策,2015,30(7):1251-1256.
[9] 罗党,刘思峰,党耀国.灰色模型GM(1,1)优化[J].中国工程科学,2003, 5(8):50-53.
[10] 廖飞.对背景值优化的新GM(1,1)模型[J].数学的实践与认识,2009,39(18):107-113.
[11] 张怡,魏勇,熊常伟.灰色模型GM(1,1)的一种新优化方法[J].系统工程理论与实践,2007,27(4):141-146.
[12] 周世健,赖志坤,藏德彦,等.加权灰色预测模型及其计算实现[J].武汉大学学报(信息科学版) ,2002, 27(5):451-455.
[13] 张彬,西桂权.基于背景值和边值修正的GM(1,1)模型优化[J].系统工程理论与实践,2013,33(3):682-688.
[14] 党耀国,刘思峰,刘斌.以x(1)(n)为初始条件的GM模型[J].中国管理科学,2005, 13(1):132-135.
[15] 尹方平.改进的以x(1)(n)为初始条件的GM模型[J].统计与决策,2010(3):164-165.
[16] 张胜东,童雄,张翼,等.基于BP人工神经网络的球磨机钢球配比预测模型[J].武汉工程大学学报,2016,38(3):307-312.
[17] 李亮,孙廷容,黄强,等.灰色GM(1,1)和神经网络组合的能源预测模型[J].能源研究与利用,2005(1):10-13.
[18] 王颖林,赖芨宇,郭丰敏.建设需求量预测分析中的人工神经网络和多元回归方法[J].武汉工程大学学报,2013,35(11):77-80,86.
[19] HUANG Y L, LEE Y H. Accurately forecasting model for the stochastic volatility data in tourism demand [J]. Modern Economy, 2011(2):823-829.
[20] XIAO L F, CHEN X Y, WANG H.Calculation and realization of new method grey residual error correction model [J]. Plos One,2021,16(7):e0254154.

相似文献/References:

[1]肖云,周春梅,虞珏,等.大冶铁矿滑坡预测模型研究[J].武汉工程大学学报,2010,(01):9.
 XIAO Yun,ZHOU Chunmei,YU Jue,et al.Study on prediction model in Hubei Daye iron mine slope[J].Journal of Wuhan Institute of Technology,2010,(06):9.
[2]肖云,李先福.基于优化的灰色GM模型的滑坡预测[J].武汉工程大学学报,2012,(1):31.
 XIAO Yun,LI Xian fu.Forecast for landslide based on Optimum Grey model[J].Journal of Wuhan Institute of Technology,2012,(06):31.
[3]任国恒,王 健,朱 海.灰色理论用于遥测数据中长期预测[J].武汉工程大学学报,2014,(04):8.
 REN Guo-heng,WANG Jian,ZHU Hai.Prediction of medium and long-term telemetry data by grey theory[J].Journal of Wuhan Institute of Technology,2014,(06):8.
[4]任国恒,王健,朱海.灰色理论用于遥测数据中长期预测[J].武汉工程大学学报,2014,(05):74.[doi:103969/jissn16742869201505016]
 REN Guo heng,WANG Jian,ZHU Hai.Prediction of medium and longterm telemetry data by grey theory[J].Journal of Wuhan Institute of Technology,2014,(06):74.[doi:103969/jissn16742869201505016]

备注/Memo

备注/Memo:
收稿日期:2024-06-06
基金项目:湖北省教育厅计划项目(B2021083);武汉工程大学教研资助项目(X2022028)
作者简介:何盈杉,硕士研究生。Email:1531511500@qq.com
*通信作者:肖利芳,硕士,副教授。Email:479448392@qq.com

更新日期/Last Update: 2026-01-06