|本期目录/Table of Contents|

[1]肖邦彦,鄂青*.声源相差对热声制冷机温降影响的模拟研究 [J].武汉工程大学学报,2025,47(06):653-657.[doi:10.19843/j.cnki.CN42-1779/TQ.202406023]
 XIAO Bangyan,E Qing*.Simulation of the influence of sound source phase difference on temperature drop of thermoacoustic refrigerator [J].Journal of Wuhan Institute of Technology,2025,47(06):653-657.[doi:10.19843/j.cnki.CN42-1779/TQ.202406023]
点击复制

声源相差对热声制冷机温降影响的模拟研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年06期
页码:
653-657
栏目:
智能制造
出版日期:
2025-12-31

文章信息/Info

Title:
Simulation of the influence of sound source phase difference on temperature drop of thermoacoustic refrigerator
文章编号:
1674 - 2869(2025)06 - 0653 - 05
作者:
肖邦彦鄂青*
武汉工程大学光电信息与能源工程学院、数理学院,湖北 武汉 430205
Author(s):
XIAO BangyanE Qing*
School of Optical Information and Energy Engineering,School of Mathematic and Physics,Wuhan Institute of Technology,
Wuhan 430205,China

关键词:
热声制冷机双声源相位差温降
Keywords:
thermoacoustic refrigeration dual sound source phase differencetemperature drop
分类号:
TB65
DOI:
10.19843/j.cnki.CN42-1779/TQ.202406023
文献标志码:
A
摘要:
为寻求谐振管中声场调节和制冷效果控制的有效方式,本文模拟了声源间的相位差变化对声场分布的影响,提出了通过调整对置激励信号的输入相位提升热声制冷机制冷效果的方法。基于热声理论和声波传送机理,从理论上分析了双声源微型热声制冷机谐振腔内声波的叠加分布规律。应用多物理场仿真软件COMSOL对驻波热声制冷机谐振腔内声场分布情况进行了声源间不同相位差条件下的数值模拟。进而对最优相位差条件下获得两端最大温降时板叠在谐振管内的位置进行了仿真研究。由理论和仿真可知,当相位差在0°~180°范围内调整时,驻波热声制冷机谐振管内声场的最佳分布(即最符合1/4波长谐振管声场需求的情况)出现在90°相位差处。并且在给定工质为氮气的情况下,通过调节定压力和定频率平面波辐射声源的相位,初步得到了两端声源间的相位差对于回热器内声场及回热器两端温降的影响情况。本文的研究方法还可用来进行回热器位置和板叠长度的参数选定,有效简化热声制冷机的设计过程。
Abstract:
To seek effective ways to regulate the sound field and control the cooling effect in resonant tubes, in this paper we simulated the influence of phase difference changes between sound sources on the distribution of the sound field, and proposed a method to enhance the cooling effect of the thermoacoustic refrigerators by adjusting the input phase of the dual excitation signal. Based on thermoacoustic theory and sound wave transmission mechanism, the superposition distribution law of sound waves in the resonant cavity of a dual source micro-thermoacoustic refrigeration machine was theoretically analyzed. The multi-physics simulation software COMSOL was applied to numerically simulate the sound field distribution inside the resonant cavity of a standing wave thermoacoustic refrigeration machine under different phase difference conditions between sound sources. Furthermore, simulation studies were conducted on the position of the plate stack inside the resonant tube when obtaining the maximum temperature drop at both ends under the optimal phase difference condition. The results revealed that when the phase difference was adjusted within the range of 0°-180°, the optimal distribution of the acoustic field inside the resonant tube (i.e., the situation that best meets the acoustic field requirements of the 1/4 wavelength resonant tube) occurred at the 90° phase difference. And under the given working fluid of nitrogen, the influence of the phase difference between the two-end sound sources on the sound field inside the regenerator and the temperature drop at both ends of the regenerator was preliminarily obtained by adjusting the phase of the plane wave radiation sound source with constant pressure and frequency. Our research method can also be used to select parameters, such as the position of the regenerator and the length of the plate stack, effectively simplifying the design process of thermoacoustic refrigerator.

参考文献/References:

[1] 肖星.热声波散热的机理研究[D].武汉:华中科技大学, 2020.
[2] CEPERLEY P H. A pistonless Stirling engine-the traveling wave heat engine[J]. Journal of the Acoustical Society of America,1979,66(5):1508-1513.
[3] STRUTT J W, RAYLEIGH B. The theory of sound: in two volumes[M]. London: Macmillan and Co.,Ltd, 1896.
[4] ROTT N,ZOUZOULAS G.Thermally driven acoustic oscillations,part IV:tubes with variable cross-section[J]. Journal of Applied Mathematics and Physics,1976,27:197-224.
[5] ROTT N. Thermally driven acoustic oscillations, part II: stability limit for helium[J]. Journal of Applied Mathematics and Physics,1973,24:54-72.
[6] ROTT N. Thermally driven acoustic oscillations, part III: second order heat flux[J]. Journal of Applied Mathematics and Physics,1975,26:43-49.
[7] ROTT N. Thermoacoustics[J]. Advances in Applied Mechanics,1980,20:135-175.
[8] 汪建新,李东,阚小美,等.驻波型热声制冷机板叠温度分布的研究[J].流体机械,2018,46(3):68-71.
[9] 古小玲,肖星,张晓青.驻波热声制冷机分层回热器的特性研究[J].低温工程,2020(1):13-18.
[10] 李萍,吴张华,张丽敏,等.室温温区热驱动热声制冷机研究[J].工程热物理学报,2023,44(9):2369-2375.
[11] 周立华,谢秀娟,李雷,等.双声源驱动热声系统声场调制研究[J].工程热物理学报,2012,33(1):27-31.
[12] 于文鑫,丁艳春,汪建新.双侧激励源对热声制冷谐振腔内声场分布的影响[J].科学技术与工程, 2017, 17(20):134-138.
[13] 郭方中,李青.热动力学[M].武汉:华中科技大学出版社,2007.
[14] 丁琦. 5 000 Hz级热声制冷样机的研究与设计[D].南京:东南大学,2017.
[15] 舒安庆. 热声机理及双声源热声制冷机的研究[D].武汉:武汉理工大学,2019.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-06-14
基金项目:湖北省教育厅科学研究计划项目(B2023040);武汉工程大学研究生教育教学改革研究项目(2024JYXM20)
作者简介:肖邦彦,硕士研究生。Email:251948741@qq.com
*通信作者:鄂 青,博士,副教授。Email:eqinghust@163.com

更新日期/Last Update: 2026-01-06