|本期目录/Table of Contents|

[1]董晨鹏,郭政义,马怡冉,等.基于Laws特征增强的多聚焦图像融合方法 [J].武汉工程大学学报,2025,47(06):658-663,682.[doi:10.19843/j.cnki.CN42-1779/TQ.202408012]
 DONG Chenpeng,GUO Zhengyi,MA Yiran,et al.A multi-focus image fusion method based on Laws feature enhancement [J].Journal of Wuhan Institute of Technology,2025,47(06):658-663,682.[doi:10.19843/j.cnki.CN42-1779/TQ.202408012]
点击复制

基于Laws特征增强的多聚焦图像融合方法
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年06期
页码:
658-663,682
栏目:
智能制造
出版日期:
2025-12-31

文章信息/Info

Title:
A multi-focus image fusion method based on Laws feature enhancement
文章编号:
1674 - 2869(2025)06 - 0658 - 06
作者:
董晨鹏1郭政义1 马怡冉1 颜超1章秀华*123
1. 武汉工程大学机电工程学院,湖北 武汉 430205;
2. 光学信息与模式识别湖北省重点实验室,湖北 武汉 430205;
3. 湖北省视频图像与高清投影工程技术研究中心,湖北 武汉 430205

Author(s):
DONG Chenpeng1 GUO Zhengyi1 MA Yiran1 YAN Chao1 ZHANG Xiuhua*123
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan 430205, China;
3. Hubei Engineering Technology Research Center of Video Image and HD Projection, Wuhan 430205, China

关键词:
多聚焦图像图像融合Laws特征增强极值策略
Keywords:
multi-focus image fusion image fusion Laws feature enhancement extremum strategy
分类号:
TP391
DOI:
10.19843/j.cnki.CN42-1779/TQ.202408012
文献标志码:
A
摘要:
针对细节丢失和块效应等影响融合图像质量的问题,提出了一种基于Laws特征增强的多聚焦图像融合方法。首先,利用Laws滤波提取多聚焦图像的Laws特征,得到Laws特征图;用改进的均值滤波方法对Laws特征图进行增强处理,得到特征增强图,并对特征增强图采用极值策略提取决策图:最后,将源图像与决策图进行加权融合,得到融合结果。使用该方法对大量图像进行实验处理,结果表明:与其他融合方法相比,基于归一化互信息度量值最大提升 32.87%,基于多尺度方案图像融合度量值增加 26.57%。该图像融合方法显著提高视觉效果,具有较强的鲁棒性,适用于光场相机的全景深成像。
Abstract:
In response to the problems of detail loss and blocking artifacts that easily affect the image quality during the multi-focus image fusion process, a method based on Laws feature enhancement was proposed. First, we extracted the Laws features of the multi-focus image using the Laws filter to obtain the Laws feature map; we enhanced the Laws feature map using the improved mean filtering algorithm to obtain the feature-enhanced map; then we applied the extremum strategy to the feature-enhanced map to obtain the decision map; finally, we performed weighted fusion between the source image and the decision map to obtain the fusion result. Extensive experiments were conducted on a large number of images, and the results showed that, comparing with existing fusion methods, the normalized mutual information metric and the multi-scale scheme image fusion metric had increased by 32.87% and 26.57%, repectively. It can be concluded that the method developed can significantly improve the visual effects with strong robustness, thereby being suitable for all-in-focus imaging of light field cameras.

参考文献/References:

[1] LIU Y, WANG L, CHENG J, et al. Multi-focus image fusion: a survey of the state of the art[J]. Information Fusion, 2020, 64: 71-91.
[2] KOU L, ZHANG L G, ZHANG K J, et al. A multi-focus image fusion method via region mosaicking on Laplacian pyramids[J]. PLoS One, 2018, 13(5): e0191085.
[3] TIAN J, CHEN L. Adaptive multi-focus image fusion using a wavelet-based statistical sharpness measure[J]. Signal Processing, 2012, 92(9): 2137-2146.
[4] WANG L, LI B, TIAN L F. Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients[J]. Information Fusion, 2014, 19: 20-28.
[5] 李恒, 张黎明, 蒋美容, 等. 基于监督学习的全卷积神经网络多聚焦图像融合算法[J]. 激光与光电子学进展, 2020, 57(8): 081015.
[6] WEI B Z, FENG X C, WANG K, et al. The multi-focus-image-fusion method based on convolutional neural network and sparse representation[J].?Entropy, 2021,23(7):827.
[7] WANG H M, LI L, LI C K, et al. Infrared and visible image fusion based on autoencoder composed of CNN-transformer[J]. IEEE Access, 2023, 11:78956-78969.
[8] ZHANG Y, BAI X Z, WANG T.? Boundary finding based multi-focus? image fusion through multi-scale morphological focus-measure[J]. Information Fusion,?2017, 35:?81-101.?
[9] SUN ?J G,?HAN ?Q L,?KOU ? L, et al.? Multi-focus image fusion algorithm based on Laplacian pyramids[J]. Journal of the Optical Society of America A,?2018,?35(3): 480-490.?
[10] WAN? T, ?ZHU? C C, QIN ?Z C. Multifocus image fusion based on robust principal component analysis[J]. Pattern Recognition Letters, 2013,34(9): 1001-1008.
[11] LIU Y, LIU? S P, WANG? Z F. Multi-focus image fusion with dense SIFT[J]. Information Fusion,2015, 23:?139-155.?
[12] LI? S T, ?KANG? X D, ?HU ?J W.?Image?fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): ?2864-2875.
[13] LAWS K I. Textured image segmentation[D].Los Angeles: University of Southern California, 1980.
[14] 彭聪, 李万乔, 李立仁, 等. 基于纹理特征提取的多聚焦图像融合方法[J].武汉工程大学学报,2024,46(2):197-202.
[15] NEJATI M, SAMAVI S, SHIRANI S. Multi-focus image fusion using dictionary-based sparse representation[J]. Information Fusion, 2015, 25: 72-84.
[16] XU S, WEI X L, ZHANG C X, et al. MFFW: a new dataset for multi-focus image fusion[Z/OL]. (2020-02-12)[2024-08-09]. https://doi.org/10.48550/arXiv.2002.04780.
[17] QIU X H, LI M, ZHANG L Q, et al. Guided filter-based multi-focus image fusion through focus region detection[J]. Signal Processing: Image Communication, 2019, 72: 35-46.
[18] NENCINI F, GARZELLI A, BARONTI S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156.
[19] LI H, MANJUNATH B S, MITRA S K. Multi-sensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995, 57(3): 235-245.
[20] LI S T, KANG X D, HU J W, et al. Image matting for fusion of multi-focus images in dynamic scenes[J]. Information Fusion, 2013, 14(2): 147-162.
[21] ZHAN K, TENG J C, LI Q Q, et al. A novel explicit multi-focus image fusion method[J]. Journal of Information Hiding and Multimedia Signal Processing, 2015, 6(3): 600-612.
[22] ZHOU F Q, LI X S, LI J, et al. Multifocus image fusion based on fast guided filter and focus pixels detection[J]. IEEE Access, 2019, 7: 50780-50796.
[23] MA H Y, LIAO Q M, ZHANG J C, et al. An α-matte boundary defocus model-based cascaded network for multi-focus image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 8668-8679.
[24] WANG Y C, XU S, LIU J M, et al. MFIF-GAN: a new generative adversarial network for multi-focus image fusion[J]. Signal Processing: Image Communication, 2021, 96: 116295.
[25] LIU Z, BLASCH E, XUE Z Y, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 94-109.

相似文献/References:

[1]陈向阳1,胡江涛1,刘 培2,等.多传感器复杂网络数据融合算法的MATLAB仿真[J].武汉工程大学学报,2015,37(01):67.[doi:10. 3969/j. issn. 1674-2869. 2015. 01. 015]
 CHEN Xiang-yang,LU Jian-tao,LIU Pei,et al.Simulation of multi-sensor complex network data  fusion algorithm in MATLAB[J].Journal of Wuhan Institute of Technology,2015,37(06):67.[doi:10. 3969/j. issn. 1674-2869. 2015. 01. 015]

备注/Memo

备注/Memo:
收稿日期:2024-08-09
基金项目:武汉工程大学第十五届研究生教育创新基金(CX2023263)
作者简介:董晨鹏,硕士研究生。Email: 3288109302@qq.com
*通信作者:章秀华,博士,教授。Email: amyyzxh@wit.edu.com

更新日期/Last Update: 2026-01-06