|本期目录/Table of Contents|

[1]刘阔,陟海豫,邹凡,等. 利用PPLT光学参量振荡器产生1.7 μm高能脉冲光源的设计 [J].武汉工程大学学报,2025,47(06):670-676.[doi:10.19843/j.cnki.CN42-1779/TQ.202412018]
 LIU Kuo,ZHI Haiyu,ZOU Fan,et al. Design of a 1.7 μm high-energy pulsed laser source utilizing a PPLT-based optical parametric oscillator [J].Journal of Wuhan Institute of Technology,2025,47(06):670-676.[doi:10.19843/j.cnki.CN42-1779/TQ.202412018]
点击复制

利用PPLT光学参量振荡器产生1.7 μm高能脉冲光源的设计
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年06期
页码:
670-676
栏目:
智能制造
出版日期:
2025-12-31

文章信息/Info

Title:
Design of a 1.7 μm high-energy pulsed laser source utilizing a PPLT-based optical parametric oscillator

文章编号:
1674 - 2869(2025)06 - 0670 - 07
作者:
刘阔12陟海豫12邹凡12刘泽川12姚瑶12吴浩煜*12
1. 武汉工程大学光电信息与能源工程学院、数理学院,湖北 武汉 430205;
2. 光学信息与模式识别湖北省重点实验室(武汉工程大学),湖北 武汉 430205

Author(s):
LIU Kuo12 ZHI Haiyu12 ZOU Fan12 LIU Zechuan12 YAO Yao12 WU Haoyu*12
1. School of Optical Information and Energy Engineering, School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China;
2. Hubei Key Laboratory of Optical Information and Pattern Recognition (Wuhan Institute of Technology), Wuhan 430205, China

关键词:
光学参量振荡器非线性包络方程PPLT晶体高能脉冲光源
Keywords:
optical parametric oscillator nonlinear envelope equation PPLT crystal high-energy pulsed laser source
分类号:
TN248
DOI:
10.19843/j.cnki.CN42-1779/TQ.202412018
文献标志码:
A
摘要:
为提升激光频率可调谐性、脉冲功率等关键指标,本文提出一种周期极化钽酸锂(PPLT)晶体型光学参量振荡器(OPO)产生1.7 μm高能脉冲光源的有效设计。通过使用非线性包络方程仿真技术,研究了包括色散、非线性、损耗以及滤波等多种效应协同作用的超短脉冲光参量振荡过程,结果表明1.7 μm高能脉冲光源的产生主要受光参量变频和自相位调制作用,与相位失配量、非线性作用长度密切相关。在此基础上,使用控制变量技术,分别研究晶体周期、通光长度以及控制温度对OPO增益特性的影响,寻找最佳的系统结构与参数配置。最终选取PPLT晶体周期为31.68 μm、通光长度为950 μm,以及控制温度为70 ℃,能够有效平衡相位失配量与有效非线性作用长度之间的影响,获得光谱半高全宽为48 nm、平均功率达到14.39 W的1.7 μm高能脉冲光源。该光源设计适用于红外光谱分析、生物荧光成像、含烃的聚合物和材料加工以及甲烷气体检测等众多重要应用领域。
Abstract:
To enhance key indicators such as laser frequency tunability and pulse power, in this paper, an effective design for generating a 1.7 μm high-energy pulsed laser source was proposed utilizing a periodically polarized LiTaO3 (PPLT) crystal type optical parametric oscillator (OPO). By employing the nonlinear envelope equation simulation method, the ultra-short-pulse optical parametric oscillation process involving the combined effects of dispersion, nonlinearity, loss, and filtering was studied. The results indicated that the generation of the 1.7 μm high-energy pulsed laser source was mainly affected by optical parametric frequency conversion and self-phase modulation, which were closely related to the phase-mismatch amount and the nonlinear-interaction length. On this basis, using the control variable technique, the effects of the crystal period, the light-passing length, and the control temperature on the OPO gain characteristics were respectively investigated to find the optimal system structure and parameter configuration. Eventually, by choosing a PPLT crystal with a period of 31.68 μm, a light-passing length of 950 μm, and a control temperature of 70 ℃, the influence between the phase-mismatch amount and the effective nonlinear-interaction length can be effectively balanced, generating a 1.7 μm high-energy pulsed laser source with a full-width-at-half-maximum spectrum of 48 nm and an average power of 14.39 W. This laser source development is applicable to various fields such as infrared spectral analysis, biofluorescence imaging, hydrocarbon- containing polymer and material processing, and methane gas detection.

参考文献/References:

[1] BASHKATOV A N, GENINA E A, KOCHUBEY V I, et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2 500 nm [J]. Optics and Spectroscopy, 2005, 99(5): 836-842.
[2] SORDILLO L A, PU Y, PRATAVIEIRA S, et al. Deep optical imaging of tissue using the second and third near-infrared spectral windows [J]. Journal of Biomedical Optics, 2014, 19(5): 056004.
[3] 仝申, 钟金成, 陈新林, 等. 1 700 nm 波段超快光纤光源开发及其在多光子成像中的应用 [J]. 激光与光电子学进展, 2024, 61(12): 1200001.
[4] ZIPFEL W R, WILLIAMS R M, WEBB W W. Nonlinear magic:multiphoton microscopy in the biosciences [J]. Nature Biotechnology, 2003, 21(11): 1369-1377.
[5] 张岩, 张鹏, 刘鹏, 等. 1.7 μm 波段光纤光源研究进展及其应用 [J]. 激光与光电子学进展, 2016, 53(9): 090002.
[6] NOMURA Y, MURAKOSHI H, FUJI T. Short-wavelength, ultrafast thulium-doped fiber laser system for three-photon microscopy[J]. OSA Continuum, 2020, 3(6): 1428-1435.
[7] WU M, JANSEN K, van der STEEN A F W, et al. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics [J]. Biomedical Optics Express, 2015, 6(9): 3276-3286.
[8] ALEXANDER V V, KE K, XU Z, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1 708 nm Raman fiber laser and contact cooling [J]. Lasers in Surgery and Medicine, 2011, 43(6): 470-480.
[9] 战泽宇, 陈吉祥, 刘萌, 等. 1.7 μm 超快光纤激光器研究进展(特邀) [J]. 红外与激光工程, 2022, 51(1): 20210850.
[10] DANIEL J M O, SIMAKOV N, TOKURAKAWA M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1 660-1 750 nm wavelength band [J]. Optics Express, 2015, 23(14): 18269-18276.
[11] LI L J, MA C Y, ZHAO N, et al. Numerical study of a bi-directional in-band pumped dysprosium-doped fluoride fiber laser at 3.2 μm [J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(7): 1017-1204.
[12] QUIMBY R S, SHAW L B, SANGHERA J S, et al. Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient output at 4.5 μm [J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125.
[13] 韩凯, 马阎星, 王小林, 等. 高功率掺铥光纤激光的研究进展 [J]. 激光与光电子学进展, 2010, 47(10): 101406.
[14] XIAO X S, GUO H T, YAN Z J, et al. 3 W narrow-linewidth ultra-short wavelength operation near 1 707 nm in thulium-doped silica fiber laser with bidirectional pumping [J]. Applied Physics B Lasers and Optics, 2017, 123(4): 135.
[15] FIRSTOV S V, ALYSHEV S V, R IUMKIN K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm [J]. Optics Letters, 2015, 40(18): 4360-4363.
[16] NGUYEN T N, KIEU K, CHURIN D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm [J]. IEEE Photonics Technology Letters, 2013, 25(19): 1893-1896.
[17] BECHEKER R, TANG M, HANZARD P H, et al. High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 μm [J]. Laser Physics Letters, 2018, 15(11): 115103.
[18] KELLER K R, BUDWEG A, ALLERBECK J, et al. Sub-three-cycle pulses at 2 μm from a degenerate optical parametric amplifier [J]. Optics Letters, 2022, 47(7): 1594-1597.
[19] ZHOU Y, CHEUNG? K? K? Y, YANG? S G, et al. Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber [J]. Optics Letters, 2009, 34(7): 989-991.
[20] KLEIN M E, ROBERTSON A, TREMONT M A, et al. Rapid infrared wavelength access with a picosecond PPLN OPO synchronously pumped by a mode-locked diode laser [J]. Applied Physics B Lasers and Optics, 2001, 73(1): 1-10.
[21] 王海龙, 杨慧琦, 苏静, 等. 基于单共振光学参量振荡器实现近红外到中红外激光输出的实验研究 [J]. 中国激光, 2022, 49(18): 1801005.
[22] LIU Z Y, TE X L, ZHANG S, et al. High-efficiency broad-linewidth widely-tunable mid-infrared OPO based on fan-out PPLT [J]. Laser Physics, 2023, 33(8): 085001.
[23] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectri [J]. Physical Review, 1962, 127(6): 1918-1939.
[24] ZHENG Z H, TANG Z W, WEI Z Y, et al. Consideration of non-phase-matched nonlinear effects in the design of quasi-phase-matching crystals for optical parametric oscillators [J]. Optics Express, 2024, 32(7): 11534-11547.
[25] CONFORTI M, BARONIO F, DE ANGELIS C. Nonlinear envelope equation for broadband optical pulses in quadratic media [J]. Physical Review A, 2010, 81(5): 053841.
[26] REID D T. Ultra-broadband pulse evolution in optical parametric oscillators [J]. Optics Express, 2011, 19(19): 17979-17984.
[27] FISHER R A, BISCHEL W K. Numerical studies of the interplay between selfphase modulation and dispersion for intense planewave laser pulses [J]. Journal of Applied Physics,1975,46(11):4921-4934.
[28] CHENG Y S, McCRACKEN R A, REID D T. Dither-free stabilization of a femtosecond doubly resonant OPO using parasitic sum-frequency mixing [J]. Optics Letters, 2020, 45(3): 768-771.
[29] BARBOZA N A,?CUDNEY R S. Improved Sellmeier equation for congruently grown lithium tantalate [J]. Applied Physics BLasers and Optics, 2009, 95(3): 453-458.
[30] MINOR C E,? CUDNEY R S. Mirrorless optical parametric oscillation in bulk PPLN and PPLT: a feasibility study [J]. Applied Physics B Lasers and Optics, 2017, 123(1): 38.
[31] 于文兵, 夏守之. 级联二阶非线性全光波长转换技术 [J]. 武汉工程大学学报, 2008, 30 (1): 113-116.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-12-20
基金项目:国家自然科学基金 (11904112) ;湖北省自然科学基金(2024AFB609);武汉工程大学科学研究基金(K202255)
作者简介:刘 阔,硕士研究生。Email: 17513365784@163.com
*通信作者:吴浩煜,博士,特聘副教授。Email: haoyuwu@wit.edu.cn

更新日期/Last Update: 2026-01-06