|本期目录/Table of Contents|

[1]张子俊,李 慧,张媛媛,等.基于纳米钯/石墨烯增敏效应对双酚A的电化学检测[J].武汉工程大学学报,2017,39(01):5-11.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 002]
 ZHANG Zijun,LI Hui,ZHANG Yuanyuan,et al.Bisphenol A Based on Enhancement Effect of Palladium Nanoparticle/Graphene[J].Journal of Wuhan Institute of Technology,2017,39(01):5-11.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 002]
点击复制

基于纳米钯/石墨烯增敏效应对双酚A的电化学检测(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年01期
页码:
5-11
栏目:
化学与化学工程
出版日期:
2017-03-29

文章信息/Info

Title:
Bisphenol A Based on Enhancement Effect of Palladium Nanoparticle/Graphene
作者:
张子俊李 慧张媛媛杨年俊万其进*
武汉工程大学化学与环境工程学院,湖北 武汉 430074
Author(s):
ZHANG Zijun LI Hui ZHANG Yuanyuan YAN Nianjun WAN Qijin*
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
钯纳米颗粒石墨烯壳聚糖双酚A修饰电极
Keywords:
graphene palladium nanoparticles chitosan bisphenol A modified electrode
分类号:
O657.1
DOI:
10. 3969/j. issn. 1674?2869. 2017. 01. 002
文献标志码:
A
摘要:
利用纳米钯/石墨烯材料构建一种测定双酚A的高灵敏电化学传感器. 本实验在石墨烯基底上电沉积钯纳米颗粒,得到纳米钯/石墨烯-壳聚糖复合物修饰玻碳电极(Pd/GR-Chit/GCE),并通过扫描电子显微镜和电化学技术对其进行表征. 研究了双酚A(BPA)在Pd/GR-Chit/GCE上的电化学行为,发现其氧化峰电流在Pd/GR-Chit/GCE表面得到显著的增强,表明修饰电极对BPA表现出明显的电催化效果. 优化了钯纳米颗粒的沉积条件、石墨烯的滴涂量、pH值、富集电位和富集时间等测定参数,建立了一种快速简便测定BPA电化学新方法,实验结果显示,在pH 7的磷酸盐缓冲溶液中,BPA峰电流与其浓度在1.0×10-7 mol/L~6.0×10-5 mol/L范围内呈良好的线性关系,检测限可达到1.0×10-8 mol/L.
Abstract:
A highly-sensitive electrochemcial sensor was developed for the determination of bisphenol A (BPA) using palladium nanoparticle/graphene materials. Graphene were applied as the support to electrodeposit palladium nanoparticles, obtaining palladium nanoparticle/graphene-chitosan modified electrode (Pd/GR-Chit/GCE), which was characterized by scanning electron microscopy and electrochemical techniques. The electrochemical behaviors of BPA were studied, and the oxidation peak currents increased greatly on the surface of Pd/GR-Chit/GCE, indicating that Pd/GR-Chit has significant electrocatalytic effect toward the oxidation of BPA. The experiment parameters including deposition potential for Pd nanoparticles, modifier amount of graphene, pH value, accumulation potential and accumulation time were optimized, developing a novel, rapid and simple electrochemical method for the determination of BPA. It was found that the peak current of BPA is linear with its concentration over the range from 1.0×10-7 mol/L to 6.0×10-5 mol/L, and the detection limit is 1.0×10-8 mol/L.

参考文献/References:

[1] CHANG H S, CHOO K H, LEE B, et al. The methods of identification, analysis, and removal of endocrine disrupting compounds (edcs) in water [J]. Journal of Hazardous Materials, 2009, 172 (1): 1-12. [2] 王玉飞,陈衡平,陈晖. 桶装饮用水中双酚a的溶出及gc/ms分析 [J]. 中国卫生检验杂志, 2003, 13(5): 581-582. WANG Y F, CHEN H P, CHEN H. Detection of bisphenol a in barreled drinking water by gc/ms [J]. Chinese Journal of Health Laboratory Technology, 2003, 13(5): 581-582. [3] 刘晓燕,张海霞,刘满仓. 酚类环境雌激素的色谱分析方法 [J]. 分析测试学报, 2007, 26(2): 288-294. LIU X Y, ZHANG H X, LIU M C. Analytical methods for the determination of phenolic environmental estrogens [J]. Journal of Instrumental Analysis, 2007, 26(2): 288-294. [4] 李江,李容,李永强,等. Bpa在na-mmt-cmc/gce修饰电极上的电化学行为与检测 [J]. 分析测试学报, 2008, 27(7): 766-768. LI J, LI R, LI Y Q, et al. Electrochemical behavior of bisphenol a at na-mmt -cmc/gce and its application [J]. Journal of Instrumental Analysis, 2008, 27(7): 766-768. [5] TAN F, CONG L C, LI X N, et al. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol a in water samples [J]. Sensors and Actuators B: Chemical, 2016, 233: 599-606. [6] LIU Y, ZHONG G X, LIU Z C, et al. Facile synthesis of novel photoresponsive mesoporous molecularly imprinted polymers for photo-regulated selective separation of bisphenol a [J]. Chemical Engineering Journal, 2016, 296: 437-446. [7] MORAES F C, SILVA T A, CESARINO I, et al. Effect of the surface organization with carbon nanotubes on the electrochemical detection of bisphenol a [J]. Sensors and Actuators B: Chemical, 2013, 117: 14-18. [8] CHEN X M, REN T Q, MA M, et al. Voltammetric sensing of bisphenol a based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(n-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode electrochim [J]. Electrochimica Acta, 2013, 111: 49-56. [9] FAN H X, LI Y, WU D, et al. Electrochemical bisphenol a sensor based on n-doped graphene sheets [J]. Analytica Chimica Acta, 2012, 711: 24-28. [10] ZHENG Z X, DU Y L, WANG Z H, et al. Pt/graphene-cnts nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol a in thermal printing papers [J]. Analyst, 2013, 138(2): 693-701. [11] DENG P H, XU Z F, KUANG Y F. Electrochemically reduced graphene oxide modified acetylene black paste electrode for the sensitive determination of bisphenol A [J]. Journal of Electroanalytical Chemistry, 2013, 707: 7-14. [12] LI Y, XU J Y, WANG L K, et al. Aptamer-based fluorescent detection of bisphenol a using nonconjugated gold nanoparticles and cdte quantum dots [J]. Sensors and Actuators B: Chemical, 2016, 222: 815-822. [13] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. [14] RAO C N R, BISWAS K, SUBRAHMANYAM K S, et al. Graphene, the new nanocarbon [J]. Journal of Materials Chemistry, 2009, 19: 2457-2469. [15] HONG W J, BAI H, XU Y X, et al. Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors [J]. The Journal of Physical Chemistry C, 2010, 114(4): 1822-1826. [16] XU H H, WANG X L, CHEN R, et al. Voltammetric determination of epinephrine in the presence of uric acid based on aminated graphene and ag nps hybrid membrane modified electrode [J]. Chemical Research in Chinese Universities, 2014, 30(2): 205-210. [17] XU C, WANG X, ZHU J W. Graphene-metal particle nanocomposites [J]. The Journal of Physical Chemistry C, 2008, 112(50): 19841-19845. [18] JIANG Y Y, LU Y Z, LI F H, et al. Facile electrochemical codeposition of “clean” graphene-pd nanocomposite as an anode catalyst for formic acid electrooxidation[J]. Electrochemistry Communications, 2012, 19: 21-24. [19] 杨平, 李兰芳, 蔡惠, 等. 双酚a在聚茜素红/碳纳米管电极上的伏安行为 [J]. 武汉工程大学学报, 2010, 32(11):18-21,24. YANG P, LI L F, CAI H, et al. Voltammetric behavior of bisphenol a on poly (alizarin red)/mwcnts/gc composite modified electrode [J]. Journal of Wuhan Institute of Technology, 2010, 32(11): 18-21,24.

相似文献/References:

[1]万其进*,廖华玲,刘义,等.石墨烯修饰电极同时测定邻苯二酚和对苯二酚[J].武汉工程大学学报,2013,(02):16.[doi:103969/jissn16742869201302004]
 WAN Qi jin,LIAO Hua ling,LIU Yi,et al.Simultaneous determination of catechol and hydroquinone?in graphene modified electrode[J].Journal of Wuhan Institute of Technology,2013,(01):16.[doi:103969/jissn16742869201302004]
[2]李亮,朱寒冰,喻丹,等.甲基橙掺杂聚吡咯氧化石墨烯复合材料[J].武汉工程大学学报,2013,(05):43.[doi:103969/jissn16742869201305009]
 LI Liang,ZHU Han bing,YU Dan,et al.Composites of polypyrrole/graphene oxide doped by methyl orange[J].Journal of Wuhan Institute of Technology,2013,(01):43.[doi:103969/jissn16742869201305009]
[3]李亮,胡军,班兴明,等.石墨烯的制备及表征[J].武汉工程大学学报,2014,(08):46.[doi:103969/jissn16742869201408008]
 LI Liang,HU Jun,BAN Xing ming,et al.Preparation and characterization of graphene[J].Journal of Wuhan Institute of Technology,2014,(01):46.[doi:103969/jissn16742869201408008]
[4]彭林峰,汪 洋,柳景亚,等.氢氧化铜/石墨烯复合材料的制备与表征[J].武汉工程大学学报,2015,37(08):41.[doi:10. 3969/j. issn. 1674-2869. 2015. 08. 008]
 ,,et al.Preparation and characterization of copper hydroxide/graphene composite[J].Journal of Wuhan Institute of Technology,2015,37(01):41.[doi:10. 3969/j. issn. 1674-2869. 2015. 08. 008]
[5]朱 芬,张新敏,佘 潇,等.氮掺杂石墨烯凝胶的制备与表征[J].武汉工程大学学报,2016,38(3):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
 ZHU Fen,ZHANG Xinmin,SHE Xiao,et al.Preparation and Characterization of Nitrogen-Doped Grapheme Hydrogel[J].Journal of Wuhan Institute of Technology,2016,38(01):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
[6]吴生丽,刘 忆,孙艳娟,等.功能化石墨烯四溴双酚A的电化学传感研究[J].武汉工程大学学报,2017,39(05):432.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 005]
 WU Shengli,LIU Yi,SUN Yanjuan,et al.An Electrochemical Sensor for Tetrabromobisphenol A Determination Based on Functionalized Graphene[J].Journal of Wuhan Institute of Technology,2017,39(01):432.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 005]
[7]朱珍妮,熊惠之,喻湘华,等.氮掺杂石墨烯/聚苯胺复合凝胶的制备与性能[J].武汉工程大学学报,2017,39(05):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
 ZHU Zhenni,XIONG Huizhi,YU Xianghua,et al. Preparation of Nitrogen-Doped Graphene/Polyaniline Composite Hydrogels and Their Performance[J].Journal of Wuhan Institute of Technology,2017,39(01):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
[8]李 阳,邱唯楚,蔡 卓,等.聚吡咯/石墨烯复合水凝胶的制备与性能[J].武汉工程大学学报,2018,40(05):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]
 LI Yang,QIU Weichu,CAI Zhuo,et al.Preparation and Properties of Polypyrrole/Graphene Compoiste Hydrogels[J].Journal of Wuhan Institute of Technology,2018,40(01):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]
[9]李 亮,陈 浩,邱唯楚,等.水热法制备聚苯胺/石墨烯复合材料的研究[J].武汉工程大学学报,2019,(01):55.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 008]
 LI Liang,CHEN Hao,QIU Weichu,et al.Hydrothermal Preparation of Polyaniline/Graphene Composites[J].Journal of Wuhan Institute of Technology,2019,(01):55.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 008]
[10]郭 畅,郑葛花,张媛媛,等.多孔石墨烯的制备及其在超级电容器中的应用[J].武汉工程大学学报,2019,(02):103.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 001]
 GUO Chang,ZHENG Gehua,ZHANG Yuanyuan,et al.Fabrication of Holey Graphene and Its Application in Supercapacitors[J].Journal of Wuhan Institute of Technology,2019,(01):103.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 001]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-02-22