|本期目录/Table of Contents|

[1]金 鑫,徐志高*,池汝安,等.亚磷酸钠的生产工艺及结晶动力学研究[J].武汉工程大学学报,2017,39(04):307-312.[doi:10. 3969/j. issn. 1674?2869. 2017. 04. 001]
 JIN Xin,XU Zhigao*,CHI Ruan,et al.Manufacturing Technique and Crystallization Kinetics of Sodium Phosphite[J].Journal of Wuhan Institute of Technology,2017,39(04):307-312.[doi:10. 3969/j. issn. 1674?2869. 2017. 04. 001]
点击复制

亚磷酸钠的生产工艺及结晶动力学研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年04期
页码:
307-312
栏目:
化学与化学工程
出版日期:
2017-10-14

文章信息/Info

Title:
Manufacturing Technique and Crystallization Kinetics of Sodium Phosphite
文章编号:
20170401
作者:
金 鑫1徐志高12*池汝安1黄晓慧3徐源来1周 芳1
1. 绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430205;2. 中南民族大学催化材料科学国家民委-教育部暨湖北省重点实验室,湖北 武汉 430074;3. 甘肃工业职业技术学院化工学院,甘肃 天水 741025
Author(s):
JIN Xin1XU Zhigao12*CHI Ru’an1HUANG Xiaohui3XU Yuanlai1ZHOU Fang1
1. Key Laboratory of Green Chemical Process(Wuhan Institute of Technology),Ministry of Education, Wuhan 430205, China;2. Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities, Wuhan 430074, China;3. School of Chemical Engineering, Gansu Industry Polytechnic College, Tianshui 740125,China
关键词:
亚磷酸钠中和法间歇动态法结晶动力学
Keywords:
sodium phosphite neutral method intermittent dynamic method crystallization kinetics
分类号:
TQ013.2
DOI:
10. 3969/j. issn. 1674?2869. 2017. 04. 001
文献标志码:
A
摘要:
采用酸碱中和法制备亚磷酸钠并利用间歇动态法对亚磷酸钠的结晶动力学进行研究. 借助电位滴定法分析亚磷酸中和过程的跃迁点,确定产物主要为亚磷酸氢二钠. 探讨了中和反应温度、摩尔比和亚磷酸浓度等因素对反应产物的影响. 利用激光粒度分析仪测试产品的粒度体积分数,根据粒数衡算和质量衡算关系经矩量变换法回归得到动力学方程,并探索影响产物晶体粒径的因素. 结果表明:亚磷酸氢二钠生成的优化工艺为控制亚磷酸和氢氧化钠的摩尔比为1∶2,亚磷酸的浓度应控制在8.54 mol/L以下,反应温度对其影响很小;亚磷酸和氢氧化钠很容易形成均匀细小的亚磷酸氢二钠,当粒度大于15 μm后,其晶体的生长与粒度无关,获得了亚磷酸氢二钠成核速率方程和成长速率方程;在亚磷酸氢二钠溶液结晶过程中,在介稳区的中部偏超溶解度曲线的位置加入少量粗晶径的晶种,控制蒸发温度在150 ℃左右,在200 r/min搅拌速度下进行结晶,可以得到晶粒较大的亚磷酸氢二钠晶体.
Abstract:
The sodium phosphite was prepared by acid-base neutralization method, and the crystallization kinetics in the crystallization process was investigated by the intermittent dynamic method. In acid-base neutralization experiment, the effects of reaction temperature, molar ratio and phosphorous acid concentration on reaction products were discussed. It was found that the optimized process for the production of disodium hydrogen phosphite was to control the molar ratio (phosphorous acid: sodium hydroxide) at 1∶2 and the concentration of phosphorous acid below 8.54 mol/L. Meanwhile, the reaction temperature had little effect on the reaction. In the crystallization process, phosphoric acid and sodium hydroxide were easy to form the uniform crystal particle shape, then the growth of crystal could be expressed by the size-independent growth model when the particle size was larger than 15 μm. The nucleation rate equation and growth rate equation of disodium hydrogen phosphite were obtained. In addition, the factors influencing the product partical size were discussed. A larger crystal of disodium hydrogen phosphite crystals can be obtained at a evaporation temperature of about 150 ℃, stirring speed of 200 r/min and adding a small amount of coarse seeds at the position of the central partial in the metastable zone bias over super solubility curve.

参考文献/References:

[1] TOUIR R,LARHZIL H,EBNTOUHAMI M,et al. Electroless deposition of copper in acidic solutions using hypophosphite reducing agent[J]. Journal of Applied Electrochemistry,2006,36 (1):69-75. [2] CHENG D H,XU W Y,ZHANG Z Y,et al. Electroless copper plating using hypophosphite as reducing agent[J]. Metal Finishing,1997,95(1):34,36-37. [3] 熊家林,刘钊杰,贡长生. 磷化工概论[M]. 北京:化学工业出版社,1994. [4] 马一平,王惠平. 次磷酸钠的生产应用[J]. 江苏化工,1998,26(3):41-42. MA Y P,WANG H P. Production of sodium hypophosphite[J]. Jiangsu Chemical Industry,1998,26(3):41-42. [5] 陈克宁,贾炳颖,王超. 次磷酸钠在CA整理体系中的催化作用[J]. 印染,2002(7):1-3,52. CHEN K N,JIA B Y,WANG C. Catalysis of sodium hypophosphite in CA finishing system[J]. Printing and Dyeing,2002(7):1-3,52. [6] 王小妮. 泥磷回收产品的净化提纯研究[D]. 昆明:昆明理工大学,2011. [7] 马红微,左萌萌,黄亮亮. 亚磷酸盐微孔化合物研究进展[J]. 科技导报,2015,33(7):100-107. MA H W,ZUO M M,HUANG L L. Progress of metal phosphate microporous compounds[J]. Science & Technology Review,2015,33(7):100-107. [8] 王惠平,马一平. 从次磷酸钠生产废渣中提取亚磷酸[J]. 江苏化工,1998(4):21-23. WANG H P,MA Y P. Extraction of phosphorous acid from waste residue from sodium hypophosphite[J]. Jiangsu Chemical Industry,1998(4):21-23. [9] RANDOLPH A D,LARSON M A. Transient and steady-state distributions in continuous mixed suspension crystallizers[J]. Aiche Journal,1962,8:639-645. [10] SOWUL L E M. Crystallization kinetics of sucrose in a MSMPR evaporative crystallizer[J]. Industrial & Engineering Chemistry Process Design & Development,1981,20(2):197-203. [11] TAVARE N S, GARSIDE J. Simultaneous estimation of crystal nucleation and growth kinetics from batch experiments[J]. Chemical Engineering Research & Design,1986,4:109-118. [12] 何兴学. 醋酸钠结晶动力学研究[D]. 杭州:浙江工业大学,2012. [13] 党乐平,王占忠,刘朋标,等. 苊冷却结晶动力学的间歇动态法研究[J]. 化学工程,2010(4):17-20. DANG L P,WANG Z Z,LIU P B,et al. Cooling crystallization kinetics of acenaphthene by using a batch dynamic method[J]. Chemical Engineering,2010(4):17-20. [14] 张笛,肖清贵,张炳烛,等. 氯氧化铋反应结晶动力学研究[J]. 无机盐工业,2014(9):16-20. ZHANG D,XIAO Q G,ZHANG B Z,et al. Study on reaction crystallization kinetics of bismuth oxychloride[J]. Inorganic Chemicals Industry,2014 (9): 16-20. [15] 全国化学标准化技术委员会. 工业次磷酸钠:HG /T 3253—2000 [S]. 北京:中国标准出版社,2000. [16]CHEMALY Z,MUHR H,FICK M. Crystallization kinetics of calcium lactate in a mixed-suspension- mixed-product removed crystallizer[J]. Industrial & Engineering Chemistry Research,1999,38:2803-2808.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-03-29基金项目:湖北省磷资源开发利用协同中心创新开放基金(P201111);湖北省教育厅优秀中青年科技创新团队项目(T201506)作者简介:金 鑫,硕士研究生. E-mail:854433482@qq.com
更新日期/Last Update: 2017-08-04