|本期目录/Table of Contents|

[1]田一泽,吴 锋*,蒋智杰,等.热声热机换热器性能的分析[J].武汉工程大学学报,2017,39(04):372-377.[doi:10. 3969/j. issn. 1674?2869. 2017. 04. 011]
 TIAN Yize,WU Feng*,JIANG Zhijie,et al.Performance Analysis of Heat Exchanger in Thermoacoustic Engine[J].Journal of Wuhan Institute of Technology,2017,39(04):372-377.[doi:10. 3969/j. issn. 1674?2869. 2017. 04. 011]
点击复制

热声热机换热器性能的分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年04期
页码:
372-377
栏目:
机电与信息工程
出版日期:
2017-10-14

文章信息/Info

Title:
Performance Analysis of Heat Exchanger in Thermoacoustic Engine
文章编号:
20170711
作者:
田一泽吴 锋* 蒋智杰 李 蒙章超明
武汉工程大学理学院,湖北 武汉 430205
Author(s):
TIAN Yize WU Feng* JIANG Zhijie LI Meng ZHANG Chaoming
School of Science, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
热声换热器  耗散最小熵产原理有效度
Keywords:
thermoacoustic heat exchanger entransy dissipation minimum entropy generation principle effectiveness
分类号:
TK12
DOI:
10. 3969/j. issn. 1674?2869. 2017. 04. 011
文献标志码:
A
摘要:
热声换热器热量传递的速率与效率直接影响着热声热机的性能.   耗散理论能更好地揭示换热器的传热优化特性,在热声换热器研究中引入  耗散理论,针对顺流和逆流两种情况,计算了热声换热器的  耗散热阻,并和最小熵产原理的结果进行了对比分析. 结果表明,在一定条件下,顺流比逆流情况下的不可逆损失要大;当换热器低温端流体的热容量小于高温端流体热容量时不可逆损失较小,结果最优.
Abstract:
The rate and efficiency of heat transfer in the thermoacoustic heat exchanger affect the performance of the thermoacoustic engine. The entransy dissipation theory was adopted in the study because it can better reflect the performance of heat exchanger. The entransy dissipation resistance of the thermoacoustic heat exchanger was calculated in the conditions of the parallel-flow and the counter-flow, and was compared with that of the minimum entropy generation principle. The study shows that the irreversible resistance in the parallel-flow is larger than that in the counter-flow. The irreversible resistance is the smallest and the result is the best when the heat capacity at the low temperature end is less than that at the high temperature end in the thermoacoustic heat exchanger.

参考文献/References:

[1] RAO R V, PATEL V K. Thermodynamic optimization of cross-flow plate-fin heat exchanger using particle swarm optimization[J].International Journal of Thermal Sciences, 2010,49(9):1712-1721. [2] HASHEMIAN M, JAFARMADAR S, DIZAJI H S. A comprehensive numerical study on multi-criteria design analyses in a novel form of double pipe heat exchanger[J]. Applied Thermal Engineering,2016(102):1228-1237. [3] BEJAN A. Entropy generation through heat and fluid flow[J]. Journal of Applied Mechanics, 1983,50(2): 475. [4] BERTOLA V, CAFARO E.A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow[J]. International Journal of Heat and Mass Transfer, 2008,51(7/8):1907-1912. [5] HESSELGREAVES J E . Rationalisation of second law analysis of heat exchangers[J]. International Journal of Heat and Mass Transfer, 2000,43(22):4189-4204. [6] GUO Z Y, ZHU H Y, LIANG X G. Entransy-A physical quantity describing heat transfer ability[J]. Heat Mass Transfer,2009, 50(13/14): 3587-3595. [7] QIAN X D, LI Z X. Analysis of entransy dissipation in heat exchanger[J]. International Journal of Thermal Sciences, 2011,50(4) : 608-614. [8] GUO Z Y, LIU X B, TAO W Q, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis[J]. International Journal of Heat and Mass Transfer, 2010,53(13/14): 2877-2884. [9] 许明田,程林,郭江峰.   耗散理论在换热器设计中的应用[J]. 工程热物理学报,2009,30(12):2090-2092. XU M T, CHENG L,GUO J F. An application of entransy dissipation theory to heat exchanger design[J] . Journal of Engineering Thermophysics,2009,30(12):2090-2092. [10] CHENG X T, ZHANG Q Z, LIANG X G. Analyses of entransy dissipation,entropy generation and entransy dissipation based thermal resistance on heat exchanger optimization[J]. Applied Thermal Engineering ,2012 ,38:31-39. [11] ZHANG C C, WANG D B, HAN Y , et al. Experimental and numerical investigation on the exergy and entransy performance of a novel plate heat exchanger[J]. Experimental Heat Transfer, 2016, 30(2):162-177. [12] BACK S,SWIFT G W. A thermoacoustic stirling wave heat engine[J]. Natural, 1999(399):335-338. [13] 刘益才,武曈,方莹. 热声热机研究进展[J]. 真空与低温,2014,20(1):1-8. LIU Y C, WU T, FANG Y. Review of developments in the thermoacoustic engine[J]. Vacuum and Cryogenics, 2014,20(1):1-8. [14] 林杰. 热声热机系统的性能优化研究[D]. 武汉:武汉工程大学,2014. [15] 周远,罗二仓. 热声热机技术的研究发展[J]. 机械工程学报,2009,45(3):14-26. ZHOU Y, LUO E C. Advance in thermoacoustic technology[J]. Journal of Mechanical Engineering,2009,45(3):14-26. [16] 刘明方. 热声热机换热器的特性研究[D]. 武汉:武汉工程大学,2012. [17] 罗德亮. 微型热声热机加热器与换热器的优化设计[D]. 武汉:武汉工程大学,2007.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-03-30 基金项目:国家自然科学基金(51176143) 作者简介:田一泽,硕士研究生. E-mail:1239233794@qq.com
更新日期/Last Update: 2017-08-04