|本期目录/Table of Contents|

[1]李月星,范明聪,王吉林,等.反应稀释自蔓延法制备碳化硼超细粉[J].武汉工程大学学报,2018,40(02):186-189.[doi:10. 3969/j. issn. 1674?2869. 2018. 02. 013]
 LI Yuexing,FAN Mingcong,WANG Jilin,et al.Preparation of Ultrafine B4C Powders by Reaction-Diluted Self-Propagation High-Temperature Synthesis Method[J].Journal of Wuhan Institute of Technology,2018,40(02):186-189.[doi:10. 3969/j. issn. 1674?2869. 2018. 02. 013]
点击复制

反应稀释自蔓延法制备碳化硼超细粉(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
40
期数:
2018年02期
页码:
186-189
栏目:
材料科学与工程
出版日期:
2018-05-17

文章信息/Info

Title:
Preparation of Ultrafine B4C Powders by Reaction-Diluted Self-Propagation High-Temperature Synthesis Method
文章编号:
20180213
作者:
李月星1范明聪1王吉林2陈亚兵1谷云乐*1
1. 武汉工程大学材料科学与工程学院,湖北 武汉 430205;2. 桂林理工大学材料科学与工程学院,广西 桂林 541004
Author(s):
LI Yuexing1 FAN Mingcong1 WANG Jilin2 CHEN Yabing1 GU Yunle*1
1. School of Materials Science and Engineering,Wuhan Institute of Technology, Wuhan 430205, China;2. School of Materials Science and Engineering,Guilin University of Technology, Guilin 541004, China
关键词:
碳化硼 自蔓延 硼酸 葡萄糖
Keywords:
boron carbide self-propagating synthesis boric acid glucose
分类号:
TQ127.1+2
DOI:
10. 3969/j. issn. 1674?2869. 2018. 02. 013
文献标志码:
A
摘要:
以硼酸/镁粉/葡萄糖为反应体系,利用稀释反应自蔓延法制备碳化硼超细粉末。通过改变反应原料的配比来调节反应体系吸放热反应的比率,控制自蔓延反应和产物晶粒尺寸。制备工艺的最佳条件为吸放热比率0.14,反应启动温度800 ℃。通过X射线衍射仪、扫描电子显微镜、拉曼和傅里叶红外光谱、激光粒度分析仪和热重差示扫描量热,对产物的晶型、形貌、结构、粒径分布进行了表征。结果表明: m(C)∶m(B)∶m(Mg)=1∶2.9∶5.8,反应启动温度为800 ℃时,反应制备得到是B4C结构的碳化硼,纯度最高,产物粒径为400 nm左右。
Abstract:
The ultrafine boron carbide powders were prepared by the diluted self-propagation high-temperature synthesis (SHS) method using H3BO3/Mg/C6H12O6 as a reaction system. The ratios of endothermic/exothermic reaction in SHS were controlled by changing the ratios of raw materials,and then controlling the SHS process and the product particle sizes. The optimal conditions were the endothermic/exothermic ratio of 0.14 with an initiation temperature of 800 ℃. The crystal structure,morphology,structure and size distribution of the products were characterized by X-ray diffraction,scanning electron microscopy,Raman and Fourier infrared spectroscopy,laser particle size analyzer and thermogravimetry differential scanning calorimetry,respectively. The results showed that the highest purity B4C powders with an average particle size of 400 nm could be prepared when the mass ratio of C,B and Mg was 1∶2.9∶5.8 and the initiation temperature was 800 ℃.

参考文献/References:

[1] 章晓波,刘宁. 碳化硼材料的性能、制备与应用[J]. 硬质合金,2006,23(1):120-125. [2] 傅博,李盛荣,王永兰. 碳化硼陶瓷材料密度的控制方法与应用[J]. 辽宁工学院学报,1997,17(2):44-47. [3] 王永兰,金志浩,郭生武,等. 核反应堆控制材料——B4C的研究[J]. 西安交通大学学报,1991,25 (4):25-30. [4] 武汉工程大学. 纳米硼粉的制备方法: 101863662 A[P]. 2010-10-20. [5] WANG J L,GU Y L,LI Z L,et al. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method [J]. Materials Research Bulletin,2013,48(6):2018-2022. [6] 武汉工程大学. 纳米二硼化钛多晶粉的制备方法: 101891215A[P]. 2010-11-24. [7] DA A Y,LONG F,WANG J L,et al. Preparation of nano-sized zirconium carbide powders through a novel active dilution self-propagating high temperature synthesis method[J]. Journal of Wuhan University of Technology-Materials Science Edition,2015,30(4):729-734. [8] ZHANG L P, GU Y L, WANG W M, et al. A fast-pyrolysis self-propagating high temperature synthesis route to single phase of boron carbide B13C2 ultrafine powders[J]. Journal of the Japan Ceramic Society,2011,119(1392): 631-634. [9] 武汉工程大学. 一种无机合成亚微米级CaB6多晶粉的方法: 101549872[P]. 2009-10-7. [10] 张来平. 含硼无机非金属纳米材料的合成与表征[D]. 武汉:武汉工程大学,2012. [11] DOMNICH V, REYNAUD S, HABER R A, et al. Boron carbide: structure, properties, and stability under stress[J]. Journal of the American Ceramic Society,2011,94(11):3605-3628. [12] WERHEIT H,ROTTER H W,MEYER F D,et al. FT-Raman spectra of isotope-enriched boron carbide[J]. Journal of Solid State Chemistry,2004,177(2):569-574. [13] 杜会静,郝锐. 傅里叶变换红外光谱法检测硼碳氮亚稳态材料的进展[J]. 理化检验:化学分册,2009,45(12):1460-1464. [14] RADEV D D,MIHAILOVA B,KONSTANTINOV L. Raman spectroscopy study of metal-containing boron carbide-based ceramics [J]. Cheminform,2002,33(17):37-41. [15] 徐娟,李兆乾,王善强,等. 以碳化细菌纤维素为碳源制备网状结构碳化硼[J]. 西南科技大学学报,2016,31(3):5-9. [16] YAN X Q,LI W J,GOTO T,et al. Raman spectroscopy of pressure-induced amorphous boron carbide [J]. Applied Physics Letters,2006,88(13):131905-1- 131905-3. [17] 谢华清,王锦昌,奚同庚,等. 富碳纳米SiC粉末的氧化除碳[J]. 材料科学与工艺,2000,8(4):63-65. [18] 曾毅,张叶方,丁传贤. 碳化硼粉末和涂层氧化特性研究[J]. 陶瓷学报,1998,19 (4):183-187.

相似文献/References:

[1]范明聪,吉钰纯,王吉林,等.间歇式推舟-CVD法制备竹节状氮化硼纳米管[J].武汉工程大学学报,2019,(04):350.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 009]
 FAN Mingcong,JI Yuchun,WANG Jilin,et al.Preparation of Bamboo-Like Boron Nitride Nanotubes by Semi-Continuous Process of Chemical Vapor Deposition[J].Journal of Wuhan Institute of Technology,2019,(02):350.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 009]

备注/Memo

备注/Memo:
收稿日期:2017-06-08基金项目:广西省自然科学基金(2016GXNSFBA380155);武汉市科学技术局关键技术攻关项目(2015010202010097)作者简介:李月星,硕士研究生。 E-mail:1030784532@qq.com*通讯作者:谷云乐,博士,教授。E-mail:380055108@qq.com引文格式:李月星,范明聪,王吉林,等. 反应稀释自蔓延法制备碳化硼超细粉 [J]. 武汉工程大学学报,2018,40(2):186-189,196.
更新日期/Last Update: 2018-04-25