|本期目录/Table of Contents|

[1]程志宇,徐国庆*,张岚斌,等.SPH真实感流体交互模拟的改进算法[J].武汉工程大学学报,2019,(03):303-306.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 018]
 CHENG Zhiyu,XU Guoqing*,ZHANG Lanbin,et al.Improved Algorithm for Realistic Fluid Interactive Simulation Based on Smoothed Particle Hydrodynamics[J].Journal of Wuhan Institute of Technology,2019,(03):303-306.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 018]
点击复制

SPH真实感流体交互模拟的改进算法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年03期
页码:
303-306
栏目:
机电与信息工程
出版日期:
2019-06-20

文章信息/Info

Title:
Improved Algorithm for Realistic Fluid Interactive Simulation Based on Smoothed Particle Hydrodynamics
文章编号:
20190318
作者:
程志宇12徐国庆*12张岚斌12许 犇12
1. 武汉工程大学计算机科学与工程学院,湖北 武汉 430205;2. 智能机器人湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
CHENG Zhiyu12 XU Guoqing*12 ZHANG Lanbin12 XU Ben12
1. School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China;2. Hubei Key Laboratory of Intelligent Robot(Wuhan Institute of Technology),Wuhan 430205, China
关键词:
流体模拟光滑粒子流体动力学方法硬件加速
Keywords:
fluid simulation smoothed particle hydrodynamics hardware acceleration
分类号:
TP391
DOI:
10. 3969/j. issn. 1674-2869. 2019. 03. 018
文献标志码:
A
摘要:
针对目前流体仿真中存在的模拟效率低及模拟交互的真实感不足等问题,提出一种基于光滑粒子流体动力学的流体模拟改进算法。首先,采用光滑粒子流体动力学方法进行粒子系统建模,通过矫正压力及速度场保证流体求解方程的精确性和稳定性;然后通过简化流体计算模型,完成流体表面建模,提高流体表面渲染速度;最后使用硬件加速算法实现流体模拟的快速渲染,提高流体的真实感和交互的实时性。实验结果表明,该算法能够明显提升流体渲染的真实感,减小计算复杂性。大规模粒子实时模拟帧率达到20帧/s,实现了较为真实的交互应用。
Abstract:
To solve the low efficiency and reality in the real fluid simulation, this paper presents an improved smoothed particle hydrodynamics movement simulation algorithm. Firstly, the particle system was modeled by smoothed particle hydrodynamics method. The accuracy and stability of the fluid solution equation was improved by correcting the pressure and velocity fields. Secondly,the water surface was modeled and the rendering speed of the fluid surface was optimized by simplifying the fluid particles calculation. Finally, the hardware acceleration algorithm was used to achieve faster fluid rendering. The experimental results show that the algorithm can significantly enhance the reality of fluid rendering and reduce the computational complexity. In large-scale particle real-time simulation, the frame rate reaches 20 frames per second, which realizes a real interactive application.

参考文献/References:

[1] 崔楠,柳有权,陈凯. 关于流体模拟细节增强技术的研究[J]. 计算机与数字工程,2014,42(4):698-701. [2] WINCHENBACH R, HOCHSTETTER H, KOLB A. Infinite continuous adaptivity for incompressible SPH[J]. ACM Transactions on Graphics (TOG), 2017, 36(4):1021-1029. [3] THUEREY N. Interpolations of smoke and liquid simulations[J]. ACM Transactions on Graphics(TOG), 2017, 36(1): 301-315. [4] 唐勇,毛菊珍,赵静,等. 欧拉模型中多烟雾自由融合实时仿真算法[J]. 计算机辅助设计与图形学学报,2016,28(5):777-784. [5] 朱晓临,殷竞存,汪欢欢. 改进的流体模拟固体边界处理算法[J]. 图学学报,2018,39(2):263-268. [6] 邵绪强, 周忠, 张劲松. 微可压缩 SPH 流体的稳定性固体边界处理算法[J]. 计算机辅助设计与图形学学报, 2014, 26(11): 1915-1922. [7] 聂霄,陈雷霆. 弱可压缩流体边界处理算法[J]. 计算机应用, 2015, 35(1):206-210.[8] 温婵娟,欧嘉蔚,贾金原. GPU通用计算平台上的SPH流体模拟[J]. 计算机辅助设计与图形学学报,2010,22(3):406-411. [9] XIAO X Y, ZHANG S, YANG X. Real-time high-quality surface rendering for large scale particle-based fluids[C]//Proceedings of the 21st ACM Siggraph Symposium on Interactive 3D Graphics and Games. Los Angeles: ACM, 2017: 121-128. [10] 刘文龙,张静. 用MC算法优化基于SPH的海浪粒子模型[J]. 海洋技术学报,2017,36(2):41-45. [11] 徐士彪,张晓鹏,陈彦云,等. 交互式水滴效果模拟[J]. 计算机辅助设计与图形学学报,2013,25(8):1159-1168. [12] 谭小辉,万旺根,黄炳,等. 基于SPH的三维流体模拟[J]. 计算机应用与软件,2009,26(12):222-224,258. [13] BENDER J, KOSCHIER D. Divergence-free smoothed particle hydrodynamics[C]//Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Los Angeles:ACM, 2015: 147-155. [14] MACKLIN M, M?LLER M. Position based fluids[J]. ACM Transactions on Graphics (TOG), 2013, 32(4): 1041-1045. [15] 陈曦,王章野,何戬,等. GPU中的流体场景实时模拟算法[J]. 计算机辅助设计与图形学学报,2010,22(3):396-405.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-01-02基金项目:湖北省自然科学基金(2014CFB786)作者简介:程志宇,硕士研究生。E-mail:czychengzhiyu@163.com*通信作者:徐国庆,博士,副教授。E-mail:124148659@qq.com引文格式:程志宇,徐国庆,张岚斌,等. SPH真实感流体交互模拟改进算法[J]. 武汉工程大学学报,2019,41(3):303-306.
更新日期/Last Update: 2019-06-19