|本期目录/Table of Contents|

[1]何 珂,刘善堂,*.SnO2-WO3复合金属氧化物对丙酮的气敏性能[J].武汉工程大学学报,2019,(04):311-315,321.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 002]
 HE Ke,LIU Shantang,*.Acetone Sensing Properties of SnO2-WO3 Metal Oxide Composites[J].Journal of Wuhan Institute of Technology,2019,(04):311-315,321.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 002]
点击复制

SnO2-WO3复合金属氧化物对丙酮的气敏性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年04期
页码:
311-315,321
栏目:
化学与化学工程
出版日期:
2019-09-27

文章信息/Info

Title:
Acetone Sensing Properties of SnO2-WO3 Metal Oxide Composites
文章编号:
20190402
作者:
何 珂12刘善堂1 2*
1. 武汉工程大学化学与环境工程学院,湖北 武汉 430205;2. 绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430074
Author(s):
HE Ke12 LIU Shantang1 2*
1. School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205,China;2. Key Laboratory of Green Chemical Process (Wuhan Institute of Technology),Ministry of Education,Wuhan 430074,China
关键词:
纳米片气敏传感器丙酮选择性SnO2-WO3
Keywords:
nanosheet gas sensor acetone selectivity SnO2-WO3
分类号:
TQ132.4;R318.08
DOI:
10. 3969/j. issn. 1674?2869. 2019. 04. 002
文献标志码:
A
摘要:
用SnO2对WO3纳米片表面进行修饰,制备了SnO2-WO3复合材料,并通过扫描电子显微镜和X射线单晶衍射对所制备的材料形貌和晶体结构进行表征。实验结果表明:制备的WO3具有纳米片状结构,厚度约为20~30 nm。随着SnO2含量的增加,复合材料逐渐形成表面附着片的球状结构,球的直径约为2.5 μm。此外,气敏性能测试研究表明:由复合量为0.2 mmol SnO2的SnO2-WO3复合材料制成的传感器对丙酮具有最佳的气敏性能,其最佳工作温度为300 ℃,此时的响应值为纯WO3纳米片的2倍左右,并且对体积分数为2×10-8的丙酮气体有响应。因此,该SnO2-WO3复合材料可以作为一种优良的丙酮气敏材料。
Abstract:
SnO2-WO3 composite materials were prepared by surface modification of WO3 nanosheets with SnO2. Their morphology and crystal structure were characterized by scanning electron microscopy and X-ray powder diffraction. The experimental results indicate that WO3 has nano-flake structure with a thickness of 20-30 nm. With the addition of SnO2, the composite material gradually changed into a spherical structure attached by some sheets with the diameter of about 2.5 μm. The tests demonstrate that the obtained SnO2-WO3 composite material with 0.2 mmol SnO2 has excellent gas sensitivity to acetone, the response value is about twice that of the pure WO3 nanosheets at the optimum working temperature of 300 ℃, and it responds to acetone gas with a volume fraction of 2×10-8. Therefore, the synthesized SnO2-WO3 composites can be used as an excellent gas-sensing material for acetone.

参考文献/References:

[1] NAYAK A K, GHOSH R, SANTRA S, et al. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds[J]. Nanoscale, 2015, 7(29): 12460-12473.[2] ZHU L, ZENG W, YE H, et al. Volatile organic compound sensing based on coral rock-like ZnO[J]. Materials Research Bulletin, 2018, 100: 259-264.[3] ZHU L, LI Y Q, ZENG W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties[J]. Applied Surface Science, 2018, 427: 281-287.[4] LONG H W,ZENG W,WANG H, et al. Self-Assembled biomolecular 1D nanostructures for aqueous sodium-Ion battery[J]. Advanced Science, 2018, 5(3): 1700634.[5] ZHANG Y J, ZENG W, LI Y Q. The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties[J]. Journal of Alloys and Compounds, 2018, 749: 355-362.[6] ZHANG Y X,ZENG W, YE H, et al. Enhanced carbon monoxide sensing properties of TiO2 with exposed (0 0 1) facet: a combined first-principle and experimental study[J]. Applied Surface Science,2018,442: 507-516.[7] XU K, LI N, ZENG D W, et al. Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11359-11368.[8] ZHU L, ZENG W. Room-temperature gas sensing of ZnO-based gas sensor: a review[J]. Sensors and Actuators A: Physical, 2017, 267: 242-261.[9] LI H, XIE W Y, LIU B, et al. Ultra-fast and highly- sensitive gas sensing arising from thin SnO2 inner wall supported hierarchical bilayer oxide hollow spheres[J]. Sensors and Actuators B: Chemical, 2017, 240: 349-357.[10] HAN L F, CHEN J L, ZHANG Y H, et al. Facile synthesis of hierarchical carpet-like WO3 microflowers for high NO2 gas sensing performance[J]. Materials Letters, 2018, 210: 8-11.[11] WANG S J,YU WW, CHENG C W, et al. Fabrication of mesoporous SnO2 nanocubes with superior ethanol gas sensing property[J]. Materials Research Bulletin, 2017, 89: 267-272.[12] YAO S Y, QU F Y, WANG G, et al. Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors[J]. Journal of Alloys and Compounds, 2017, 724: 695-702.[13] ZHAO D P, WU X. Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification[J]. Materials Letters, 2018, 210: 354-357.[14] LI P, LI X, ZHAO Z Y, et al. Correlations among structure, composition and electrochemical performances of WO3 anode materials for lithium ion batteries[J]. Electrochimica Acta,2016,192: 148-157.[15] NARSIMULU D, VINOTH S, SRINADHU E S, et al. Surfactant-free microwave hydrothermal synthesis of SnO2 nanosheets as an anode material for lithium battery applications[J]. Ceramics International, 2018, 44(1): 201-207.[16] LI H, LIU B, CAI D P, et al. High-temperature humidity sensors based on WO3-SnO2composite hollow nanospheres[J]. Journal of Materials Chemistry A, 2014, 2(19): 6854-6862.[17] YIN M L, YAO Y, FAN H B, et al. WO3-SnO2 nanosheet composites: hydrothermal synthesis and gas sensing mechanism[J]. Journal of Alloys and Compounds, 2018, 736: 322-331.[18] 唐伟, 王兢. 金属氧化物异质结气体传感器气敏增强机理[J]. 物理化学学报,2016,32(5):1087-1104.

相似文献/References:

[1]舒绍明,刘翎玥,刘善堂*.偏锡酸锌空心立方体的合成及其乙醇气敏性能[J].武汉工程大学学报,2017,39(02):141.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 007]
 SHU Shaoming,LIU Lingyue,LIU Shantang*.Fabrication of Zinc Stannate Hollow Cubes and Their Sensing Properties for Ethanol[J].Journal of Wuhan Institute of Technology,2017,39(04):141.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 007]

备注/Memo

备注/Memo:
收稿日期:2019-04-28基金项目:国家自然科学基金(21471120)作者简介:何 珂,硕士研究生。 E-mail:630321467@qq.com*通讯作者:刘善堂,博士,教授。 E-mail:stliu@wit.edu.cn引文格式:何珂,刘善堂. SnO2-WO3复合金属氧化物对丙酮的气敏性能[J]. 武汉工程大学学报,2019,41(4):311-315,321
更新日期/Last Update: 2019-08-05