|本期目录/Table of Contents|

[1]古双喜,王 超,曹 爽,等.二苯基嘧啶类化合物抗癌活性的研究进展[J].武汉工程大学学报,2020,42(02):119-128,133.[doi:10.19843/j.cnki.CN42-1779/TQ. 202002016]
 GU Shuangxi,WANG Chao,CAO Shuang,et al.Progress in Anticancer Activity of Diphenylpyrimidines[J].Journal of Wuhan Institute of Technology,2020,42(02):119-128,133.[doi:10.19843/j.cnki.CN42-1779/TQ. 202002016]
点击复制

二苯基嘧啶类化合物抗癌活性的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年02期
页码:
119-128,133
栏目:
化学与化学工程
出版日期:
2021-01-26

文章信息/Info

Title:
Progress in Anticancer Activity of Diphenylpyrimidines
文章编号:
1674 - 2869(2020)02 - 0119 - 10
作者:
古双喜王 超曹 爽王海峰
武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
GU Shuangxi WANG Chao CAO Shuang WANG Haifeng
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
二苯基嘧啶类化合物靶点抗癌活性恶性肿瘤激酶抑制剂选择性
Keywords:
diphenylpyrimidines target anticancer activity malignant tumor kinase inhibitor selectivity
分类号:
R9
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202002016
文献标志码:
A
摘要:
二苯基嘧啶类化合物(DPPYs)因其特有的骨架结构能与癌细胞中的多种靶点结合,其中很多化合物还具有活性高、选择性好和抗突变株能力强等优点,多个化合物处于临床研究中,代表性药物奥希替尼已于2015年被美国食品药品监督管理局(FDA)批准上市且很快成为“重磅炸弹药物”。根据不同的靶点将该类化合物分为六类,综述了国内外DPPYs的抗癌活性研究进展。对于具有多靶点活性的部分化合物,将其归类到靶点研究最为深入的抑制剂中。DPPYs在抗癌药物研究中前景广阔,值得关注。
Abstract:
Diphenylpyrimidines (DPPYs) can bind to many targets of cancer cells due to its special skeleton, and many of them are endowed with high potency, good selectivity and potent anti-mutation activity to cancer cells. Among them, multiple compounds are in clinical studies, and the representative drug Osimertinib has soon become a "blockbuster drug" since it was approved by U. S. Food and Drug Administration in 2015. Herein, DPPYs were classified into six types according to their different targets, and the progress in anticancer activity of DPPYs was reviewed. Some multi-target DPPYs were classified into the inhibitors with the most deeply investigated target. DPPYs are worthy of attention for their promising future in the study of anticancer drugs.

参考文献/References:

[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer Journal for Clinicians, 2018, 68(6):394-424. [2] ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37?513?025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries [J]. The Lancet, 2018, 391(10125):1023-1075. [3] LI N, HUANG H Y, WU D W, et al. Changes in clinical trials of cancer drugs in mainland China over the decade 2009-18: a systematic review [J]. The Lancet Oncology, 2019, 20(11):e619-e626. [4] 黄慧瑶, 吴大维, 王海学, 等. 2019年中国肿瘤药物临床实验进展研究 [J]. 中华肿瘤杂志, 2020, 42(2):127-132. [5] ZHANG Q, FENG W, ZHOU H Y, et al. Advances in preclinical small molecules for the treatment of NSCLC [J]. Expert Opinion on Therpeutic Patents, 2009, 19(6):731-751. [6] 孙丹彤, 侯和磊, 张晓春. 间变性淋巴瘤激酶-酪氨酸激酶抑制剂治疗非小细胞肺癌的临床应用及研究进展 [J]. 中国新药杂志, 2019, 28(2):40-48. [7] CASALUCE F, SGAMBATO A, MAIONE P, et al. ALK inhibitors: a new targeted therapy in the treatment of advanced NSCLC [J]. Targeted Oncology ,2013, 8(1):55-67. [8] GALKIN A V, MELNICK J S, SUNGJOON K, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1):270-275. [9] SABBATINI P, KORENCHUK S, ROWAND J L, et al. GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers [J]. Molecular Cancer Therapeutics, 2009, 8(10):2811-2820. [10] MESAROS E F, BURKE J P, PARRISH J D, et al. Novel 2,3,4,5-tetrahydro-benzo[d]azepine deriva- tives of 2,4-diaminopyrimidine, selective and orally bioavailable ALK inhibitors with antitumor efficacy in ALCL mouse models [J]. Bioorganic & Medicinal Chemistry Letters, 2011, 21(1):463-466. [11] GINGRICH D E, LISKO J G, CURRY M A, et al. Discovery of an orally efficacious inhibitor of anaplastic lymphoma kinase [J]. Journal of Medicinal Chemistry, 2012, 55(10):4580-4593. [12] OTT G R, CHENG M, LEARN K S, et al. Discovery of clinical candidate CEP-37440, a selective inhibitor of focal adhesion kinase (FAK) and anaplastic lymphoma kinase (ALK) [J]. Journal of Medicinal Chemistry, 2016, 59(16):7478-7496. [13] BRESLIN H J, DORSEY B, OTT G R. Macrocyclic compounds as ALK, FAK and JAK2 inhibitors and their preparation and use for the treatment of ALK-, FAK- and JAK2-mediated diseases:WO2012125603 [P]. 2012-09-20. [14] LIU T J, LAFORTUNE T, HONDA T, et al. Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo [J]. Molecular Cancer Therapeutics, 2007, 6(4):1357-1367. [15] SLACK-DAVIS J K, MARTIN K H, TILGHMAN R W, et al. Cellular characterization of a novel focal adhesion kinase inhibitor [J]. Journal of Biological Chemistry, 2007, 282(20):14845-14852. [16] JUNG S Y, KHO S, SONG K H, et al. Novel focal adhesion kinase 1 inhibitor sensitizes lung cancer cells to radiation in a p53-independent manner [J]. Inter- national Journal of Oncology, 2017, 51(5):1583- 1589. [17] QU M H, LIU Z H, ZHAO D, et al. Design, synthesis and biological evaluation of sulfonamide-substituted diphenylpyrimidine derivatives (Sul-DPPYs) as potent focal adhesion kinase (FAK) inhibitors with antitumor activity [J]. Bioorganic & Medicinal Chemistry, 2017, 25(15):3989-3996. [18] AI M, WANG C Y, TANG Z Y, et al. Design and synthesis of diphenylpyrimidine derivatives (DPPYs) as potential dual EGFR T790M and FAK inhibitors against a diverse range of cancer cell lines [J]. Bioorganic Chemistry, 2019, 94:103408. [19] WANG L H, AI M, JIN L L, et al. Structure-based modification of carbonyl-diphenylpyrimidines (Car- DPPYs) as a novel focal adhesion kinase (FAK) inhibitor against various stubborn cancer cells [J]. European Journal of Medicinal Chemistry, 2019, 172:154-162. [20] LYNCH T J, BELL D W, SORDELLA R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to Gefitinib [J]. The New England Journal of Medicine, 2004, 350(21):2129-2139. [21] SHEPHERD F A, RODRIGUES P J, CIULEANU T, et al. Erlotinib in previously treated non-small-cell lung cancer [J]. The New England Journal of Medicine, 2005, 353(2):123-132. [22] LE T, GERBER D E. Newer-generation EGFR inhibitors in lung cancer: how are they best used?[J]. Cancers, 2019, 11(3):e366. [23] MURTUZA A, BULBUL A, SHEN J P, et al. Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer [J]. Cancer Research, 2019, 79(4):689-698. [24] ZHOU W J, ERCAN D, CHEN L, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M [J]. Nature, 2009, 462(7276):1070-1074. [25] ZHOU W J, ERCAN D, JAENNE P A, et al. Discovery of selective irreversible inhibitors for EGFR-T790M [J]. Bioorganic & Medicinal Chemistry Letters, 2011, 21(2):638-643. [26] CHA M Y, KANG S J, KIM M R, et al. Preparation of novel fused pyrimidine derivatives for inhibition of tyrosine kinase activity:WO2011162515 [P]. 2011- 12-29. [27] WALTER A O, SJIN R T T, HARINGSMA H J, et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC [J]. Cancer Discovery, 2013, 3(12):1404-1415. [28] FINLAY M R V , MARK A, SUSAN A, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor [J]. Journal of Medicinal Chemistry, 2014, 57(20):8249-8267. [29] 徐晓,王小波,毛龙,等. 作为蛋白激酶抑制剂的新型吡咯并嘧啶化合物:CN103748096 [P]. 2014-04-23. [30] 喻红平,危明松,崔媛媛,等. EGFR抑制剂及其制备和应用:WO2016054987 [P]. 2016-04-14. [31] 陈文腾, 刘星雨, 邵加安, 等. 含卤代丙烯酰胺侧链的嘧啶类衍生物及制备和应用:CN106243044 [P]. 2016-12-21. [32] 俞永平, 罗婧, 陈文腾, 等. 含异羟肟酸片段的2,4-二芳胺基嘧啶类衍生物及制备和应用:CN105646371 [P]. 2016-06-08. [33] SONG Z D, JIN Y, GE Y, et al. Synthesis and biological evaluation of azole-diphenylpyrimidine derivatives (AzDPPYs) as potent T790M mutant form of epidermal growth factor receptor inhibitors [J]. Bioorganic & Medicinal Chemistry, 2016, 24(21):5505-5512. [34] SONG A R, ZHANG J B, GE Y, et al. C-2 (E)-4-(Styryl)aniline substituted diphenylpyrimidine derivatives (Sty-DPPYs) as specific kinase inhibitors targeting clinical resistance related EGFRT790M mutant [J]. Bioorganic & Medicinal Chemistry, 2017, 25(10):2724-2729. [35] SONG Z D, HUANG S S, YU H Q, et al. Synthesis and biological evaluation of morpholine-substituted diphenylpyrimidine derivatives (Mor-DPPYs) as potent EGFR T790M inhibitors with improved activity toward the Gefitinib-resistant non-small cell lung cancers (NSCLC) [J]. European Journal of Medicinal Chemistry, 2017, 133:329-339. [36] YI Y Y, WANG L H, ZHAO D, et al. Structural optimization of diphenylpyrimidine scaffold as potent and selective epidermal growth factor receptor inhibitors against L858R/T790M resistance mutation in non-small cell lung cancer [J]. Chemical Biology and Drug Design, 2018, 92(6):1988-1997. [37] EVANS E, PONADER S, KARP R, et al. Covalent inhibition of BTK with clinical development compound AVL-292 disrupts signaling that maintains the microenvironment necessary for chronic lymphocytic leukemia growth [J]. Clinical Lymphoma Myeloma and Leukemia, 2011, 11:S173-S174. [38] EVANS E K, RICHLAND T, SHARON A, et al. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans [J]. Journal of Pharmacology & Experimental Therapeutics, 2013, 346(2):219-228. [39] GE Y, YANG H J, WANG C Y, et al. Design and synthesis of phosphoryl-substituted diphenyl- pyrimidines (Pho-DPPYs) as potent Bruton’s tyrosine kinase (BTK) inhibitors: targeted treatment of B lymphoblastic leukemia cell lines [J]. Bioorganic & Medicinal Chemistry, 2017, 25(2):765-772. [40] LIU H, QU M H, XU L N, et al. Design and synthesis of sulfonamide-substituted diphenylpyrimidines (SFA-DPPYs) as potent Bruton’s tyrosine kinase (BTK) inhibitors with improved activity toward B-cell lymphoblastic leukemia [J]. European Journal of Medicinal Chemistry, 2017, 135:60-69. [41] WANG C Y, LI S, MENG Q, et al. Novel amino acid-substituted diphenylpyrimidine derivatives as potent BTK inhibitors against B cell lymphoma cell lines [J]. Bioorganic & Medicinal Chemistry, 2018, 26(14):4179-4186. [42] LI X T, ZUO Y Y, TANG G H, et al. Discovery of a series of 2,5-diaminopyrimidine covalent irreversible inhibitors of Bruton’s tyrosine kinase with in vivo antitumor activity [J]. Journal of Medicinal Chemistry, 2014, 57(12):5112-5128. [43] JIN K P, BYUN J Y, JI A P, et al. HM71224, a novel Bruton’s tyrosine kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: a potential drug for rheumatoid arthritis [J]. Arthritis Research & Therapy, 2016, 18(1):91(1-9). [44] GE Y, JIN Y, WANG C Y, et al. Discovery of novel bruton’s tyrosine kinase (BTK) inhibitors bearing a N,9-diphenyl-9H-purin-2-amine scaffold [J]. ACS Medicinal Chemistry Letters, 2016, 7(12):1050- 1055. [45] KOPS G J P L, FOLTZ D R, CLEVELAND D W. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(23):8699-8704. [46] SUI L Y, ZHANG S, HUANG R, et al. HDAC11 promotes meiotic apparatus assembly during mouse oocyte maturation via decreasing H4K16 and alpha-tubulin acetylation[J]. Cell Cycle,2020,19(3):354-362. [47] BHARADWAJ R, YU H T. The spindle checkpoint, aneuploidy, and cancer [J]. Oncogene, 2004, 23(11): 2016-2027. [48] SALMELA A L, POUWELS J, MAKI-JOUPPILA J, et al. Novel pyrimidine-2,4-diamine derivative suppresses the cell viability and spindle assembly checkpoint activity by targeting Aurora kinases [J]. Carcinogenesis, 2013, 34(2):436-445. [49] XU Y, HAO S Y, ZHANG X J, et al. Discovery of novel 2,4-disubstituted pyrimidines as Aurora kinase inhibitors [J]. Bioorganic & Medicinal Chemistry Letters, 2020, 30(3):126885. [50] WANG S, MIDGLEY C A, SCA?ROU F, et al. Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin- 2-amine aurora kinase inhibitors [J]. Journal of Medicinal Chemistry, 2010, 53(11):4367-4378. [51] GAO J D, FANG C, XIAO Z Y, et al. Discovery of novel 5-fluoro-N2,N4-diphenylpyrimidine-2,4-diamines as potent inhibitors against CDK2 and CDK9 [J]. MedChemComm, 2015, 6(3):444-454. [52] 马徐民,田凤,胡美纯,等. 小分子石蒜碱抗肿瘤作用的研究进展[J]. 武汉工程大学学报,2019,41(4):327-333. [53] 宋艳玲,韩鹏敏,杜新春,等. 抑制PI3K信号通路的抗肿瘤天然药物研究进展[J]. 现代药物与临床,2017,32(6):1156-1160.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-02-24 基金项目:国家自然科学基金(21877087);武汉市国际科技合作项目(2017030209020257) 作者简介:古双喜,博士,副教授,硕士研究生导师。E-mail: shuangxigu@163.com 引文格式:古双喜,王超,曹爽,等. 二苯基嘧啶类化合物抗癌活性的研究进展[J]. 武汉工程大学学报,2020,42(2):119-128,133.
更新日期/Last Update: 2020-06-19