|本期目录/Table of Contents|

[1]程 航,喻九阳,汪 威*,等.三相混合器内部流场的数值模拟[J].武汉工程大学学报,2020,42(02):231-236.[doi:10.19843/j.cnki.CN42-1779/TQ.201910034]
 CHENG Hang,YU Jiuyang*,WANG Wei,et al.Numerical Simulation of Internal Flow Field in Three-Phase Mixer[J].Journal of Wuhan Institute of Technology,2020,42(02):231-236.[doi:10.19843/j.cnki.CN42-1779/TQ.201910034]
点击复制

三相混合器内部流场的数值模拟(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年02期
页码:
231-236
栏目:
机电与信息工程
出版日期:
2021-01-26

文章信息/Info

Title:
Numerical Simulation of Internal Flow Field in Three-Phase Mixer
文章编号:
1674 - 2869(2020)02 - 0231 - 06
作者:
程 航喻九阳汪 威*孟观林王家全
武汉工程大学 湖北省绿色化工装备工程技术研究中心,湖北 武汉 430205
Author(s):
CHENG HangYU Jiuyang*WANG WeiMENG Guanlin WANG Jiaquan
Hubei Green Chemical Equipment Engineering Research Center, Wuhan Institute of Technology,Wuhan 430205,China
关键词:
三相混合器流场数值模拟微气泡气浮
Keywords:
three-phase mixer flow fieldnumerical simulation microbubble air flotation
分类号:
TQ027.1
DOI:
10.19843/j.cnki.CN42-1779/TQ.201910034
文献标志码:
A
摘要:
采用欧拉模型与群体平衡模型相结合的方法对三相混合器流场进行数值模拟,对比了未充气与充气条件下混合器速度场分布规律,分析了充气条件下流场中气泡分布特征。模拟结果表明:充气后对流场的强化提高了微气泡与粒子之间的碰撞聚并粘附效率。充气后流场中微气泡粒径大量分布于100~200 μm之间,并且出口气携率达到19.77%。较于传统的气浮技术,微气泡与粒子间碰撞几率更大、气泡直径小数量大、分布范围窄、粘附效果更好,因此气浮性能更佳。
Abstract:
The numerical simulation of the three-phase mixer flow field was carried out by combining the Euler model with the group balance model. Additionally, a comparison analysis of the velocity field distribution in the flow field under aerated?and non-aerated?conditions was conducted. Moreover, characteristics of bubble distribution in flow field under aerated conditions were analyzed. The simulation results show that the enhancement of the flow field after inflation improves the efficiency of collision, coalescence and adhesion between microbubbles and particles. In case of aeration, the particle sizes of most of microbubbles in the flow field are between 100 and 200 μm, and the outlet gas entrainment rate reaches 19.77%. Compared with the traditional air floating technique, the collision probability between microbubbles and particles is higher, the diameter of bubbles is smaller, the distribution range is narrower, and the adhesion effect is better. Therefore, the air flotation performance is better.

参考文献/References:

[1] 蔡志伟. 污水处理中的气浮技术探析[J]. 低碳世界,2018(4):1-2. [2] SATHTHASIVAM J,LOGANATHAN K,SARP S.An overview of oil-water separation using gas flotation system[J]. Chemosphere,2015,144(1):671-680. [3] 郝连朋,朱静红,付长营. 气浮技术在海上平台含油污水处理中的应用探究[J]. 中国石油和化工标准与质量,2018,38(7):151-152. [4] 王晨,王振波,李娅萱,等. 气浮气泡的生成规律影响因素实验研究[J]. 过滤与分离,2016,26(3):13-17. [5] EDZWALD J K . Dissolved air flotation and me[J]. Water Research, 2010, 44(7): 2077 -2106. [6] 赵鹏,方全利,陈宝锋. 加压溶气气浮设备结构与工艺技术研究现状[J]. 中国化工装备,2015,17(4):7-9,12. [7] MIROSLAV C, DWAIN M, WADE M.From air sparged hydrocyclone to gas energy mixing flotation[J]. Water Environment Research,2001,15(7):2227- 2245. [8] 蔡小垒. 气浮旋流一体化水处理技术理论及工程应用研究[D]. 北京:北京化工大学,2017. [9] 王大鹏,刘炯天,刘江林,等. 旋流-静态微泡浮选柱在胶磷矿浮选工艺中的应用[J]. 武汉工程大学学报,2011,33(3):5-8. [10] 王灵秀,张仁元,陈观生. 旋流式微混合器混合特性[J]. 功能材料与器件学报,2008,14(6):1049-1053. [11] 郝伟华. GEM溶气浮选系统在丙烷脱氢装置中污水预处理上的应用[J]. 当代化工研究,2018(6):123-124. [12] 刘颖,金鑫,金鹏康,等. 溶气气浮的微气泡影响因素及其与絮体的结合特性[J]. 中国给水排水,2018,34(5):1-5. [13] 葛大强,李佳佳,邓保庆. 溶气气浮池气液两相流二维数值模拟[J]. 广州化工,2014,42(9):65-67. [14] 张涛,方舟,董皓,等. 旋转式气液混合器流场数值模拟与状态分析[J]. 西安工业大学学报,2017,37(4):338-344. [15] CAI X L,CHEN J Q,LIU M ,et al.Numerical studies on dynamic characteristics of oil-water separation in loop flotation column using a population balance model[J]. Separation and Purification Technology,2017,176:134-144.

相似文献/References:

[1]刘玉华,喻九阳,郑小涛,等.气气混合器的三维流场数值模拟[J].武汉工程大学学报,2008,(02):108.
 LIU Yu hua,YU Jiu yang,ZHENG Xiao tao,et al.The numerical simulation of fluid flow in a threedimensionalmodel of gasgas mixer[J].Journal of Wuhan Institute of Technology,2008,(02):108.
[2]舒安庆,程孟,徐才福,等.基于Solidworks/Fluent软件的旋风分离器造型与流场分析[J].武汉工程大学学报,2010,(07):81.[doi:10.3969/j.issn.16742869.2010.07.021]
 SHU An qing,CHENG Meng,XU Cai fu,et al.Cyclone modeling and flow distribution analysisbased on Solidworks and Fluent[J].Journal of Wuhan Institute of Technology,2010,(02):81.[doi:10.3969/j.issn.16742869.2010.07.021]
[3]舒安庆,王 敏,魏化中,等.直斜错位桨搅拌槽内流场的探究[J].武汉工程大学学报,2015,37(01):44.[doi:10. 3969/j. issn. 1674-2869. 2015. 01. 010]
 SHU An-qing,WANG Min,WEI Hua-zhong,et al.Flow field in stirred tankof straight-gradient dislocated agitator[J].Journal of Wuhan Institute of Technology,2015,37(02):44.[doi:10. 3969/j. issn. 1674-2869. 2015. 01. 010]
[4]刘海龙,朱鑫姝,邓佩刚*.数据机房送风孔板处空气流动的数值模拟[J].武汉工程大学学报,2021,43(02):212.[doi:10.19843/j.cnki.CN42-1779/TQ.202011003]
 LIU Hailong,ZHU Xinshu,DENG Peigang*.Numerical Simulation of Air Flow at Perforated Plate in Data Center[J].Journal of Wuhan Institute of Technology,2021,43(02):212.[doi:10.19843/j.cnki.CN42-1779/TQ.202011003]

备注/Memo

备注/Memo:
收稿日期:2019-10-29基金项目:武汉工程大学科学技术发展院研发项目(19QD11)作者简介:程 航,硕士研究生。E-mail:575812239@qq.com*通讯作者:汪 威,博士,讲师。E-mail:312945886@qq.com引文格式:程航,喻九阳,汪威,等. 三相混合器内部流场的数值模拟[J]. 武汉工程大学学报,2020,42(2):231-236.
更新日期/Last Update: 2020-06-20