|本期目录/Table of Contents|

[1]王肖已,姚槐应*,李 杏.草地土壤生态系统对氮沉降响应的研究进展[J].武汉工程大学学报,2020,42(03):276-281.[doi:10.19843/j.cnki.CN42-1779/TQ. 201912015]
 WANG Xiaoyi,YAO Huaiying*,LI Xing.Research Progress in Soil Ecosystem Responses to Nitrogen Deposition in Grasslands[J].Journal of Wuhan Institute of Technology,2020,42(03):276-281.[doi:10.19843/j.cnki.CN42-1779/TQ. 201912015]
点击复制

草地土壤生态系统对氮沉降响应的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年03期
页码:
276-281
栏目:
化学与化学工程
出版日期:
2023-03-14

文章信息/Info

Title:
Research Progress in Soil Ecosystem Responses to Nitrogen Deposition in Grasslands
文章编号:
1674 - 2869(2020)03 - 0276 - 06
作者:
王肖已姚槐应*李 杏
武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
WANG XiaoyiYAO Huaiying*LI Xing
School of Environmental Ecology and Biological Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
土壤生态系统氮沉降土壤微生物酶活性
Keywords:
soil ecosystem nitrogen deposition soil microbes enzyme activities
分类号:
S812
DOI:
10.19843/j.cnki.CN42-1779/TQ. 201912015
文献标志码:
A
摘要:
草地分布十分广泛,且大多位于生态脆弱带,对全球变化响应十分敏感。本文综述了草地土壤理化性质、酶活性和微生物量、多样性、群落结构以及功能基因丰度对氮沉降响应的研究进展。在低氮条件下,氮沉降有利于土壤无机氮库、有效磷和有机碳库的储存,细菌数量和多样性的增加。随着氮沉降量持续增加,将加剧土壤酸化,硝态氮的淋失,降低有机碳库和磷库储量、降低微生物量和多样性等负面效应,引起草地生态功能退化。因此,为保护草地生态系统多样性和维持其生态功能,未来应加强对我国不同草地生态系统氮饱和阈值的研究。
Abstract:
Grasslands cover a significant portion of the earth’s terrestrial surface and most of them are in ecological fragile zones, so they are sensitive to global changes. This paper reviews the response of soil physical and chemical properties, enzyme activity, microbial biomass, diversity, community structure and functional genes abundance to nitrogen deposition. Under the condition of low nitrogen availability, nitrogen deposition is beneficial to the storage of soil inorganic nitrogen pool, available phosphorus and organic carbon pools, and the increase of bacterial population and diversity. The continuous increase of nitrogen deposition will aggravate soil acidification, nitrate nitrogen leaching, reduce the storage of organic carbon and phosphorus, and decrease microbial biomass and diversity, resulting in degradation of grassland ecological function. Therefore, to protect the diversity of grassland ecosystem and maintain its ecological function, we should strengthen the research on the threshold values of nitrogen saturation with different grassland ecosystems in China.

参考文献/References:

[1] DORMAAR J F, WILLMS S. Distribution of nitrogen fractions in grazed and unglazed fescue grassland Ah horizons[J]. Journal of Range Management, 1990, 43(1):6-9. [2] 李香真, 陈佐忠. 放牧草地生态系统中氮素的损失和管理[J]. 气候与环境研究, 1997, 2(3):241-250. [3] 李思亮, 刘丛强, 肖化云. 地表环境氮循环过程中微生物作用及同位素分馏研究综述[J]. 地质地球化学, 2002, 30(4):40-45. [4] 吴玉凤, 高霄鹏, 桂东伟,等. 大气氮沉降监测方法研究进展[J]. 应用生态学报, 2019, 30(10):3605-3614. [5] COPLEY J. Ecology goes underground[J]. Nature, 2000, 406(6795):452-454. [6] XIA J Y, NIU S L, WAN S Q. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe[J]. Global Change Biology, 2009, 15:1544-1556.[7] 张杰琦, 李奇, 任正炜. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响[J]. 植物生态学报, 2010(10):5-11. [8] BAI Y, WU J, CLARK C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands[J]. Global Change Biology, 2010, 16(1):358-372. [9] 樊文韬. 氮添加对内蒙古不同放牧背景下荒漠草原群落特征的影响[D]. 呼和浩特:内蒙古大学,2019. [10] ZENG D, LI L, FAHEY T, et al. Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland[J]. Biogeochemistry (Dordrecht), 2010, 98(1):185-193. [11] NOHRASTED H ?, ARNEBRANT K, BAATH E, et al. Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized pine forest soils in Sweden[J]. Canadian Journal of Forest Research, 1989, 19(3): 323-328. [12] 邓玉峰,田善义,成艳红,等. 模拟氮沉降下施石灰对休耕红壤优势植物根际土壤微生物群落的影响[J]. 土壤学报,2019,56(16):1449-1458. [13] ZHANG X, WANG Q, GILLIAM F S, et al. Effect of nitrogen fertilization on net nitrogen mineralization in a grassland soil, northern China[J]. Grass and Forage Science, 2012, 67(2): 219-230. [14] BOWMAN W D, CLEVELAND C C, HALADA L, et al. Negative impact of nitrogen deposition on soil buffering capacity[J]. Nature Geoscience, 2008, 1(11): 767-770. [15] LU X, MAO Q, GILLIAM F S, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[J]. Global Change Biology, 2014, 20(12): 3790-3801. [16] 郭群. 氮添加对内蒙古温带典型草原土壤的酸化效应及水分的影响[J]. 应用生态学报, 2019, 30(10):3285-3291. [17] MA L N, LU X T, LIU Y, et al. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China[J]. PLoS One, 2011, 6(11):e 27645. [18] 邹亚丽, 牛得草, 杨益, 等. 氮素添加对黄土高原典型草原土壤氮矿化的影响[J]. 草地学报, 2014, 22(3): 461-468. [19] 朱天鸿, 程淑兰, 方华军, 等. 青藏高原高寒草甸土壤 CO2 排放对模拟氮沉降的早期响应[J]. 生态学报,植物生态学报, 2011,31(10):2687-2696. [20] 曾昭阳, 范跃新, 林慰敏,等. 氮沉降对中亚热带米槠天然林土壤有效磷的影响[J]. 亚热带资源与环境学报, 2019(3):23-28. [21] 杨丽丽,龚吉蕊,刘敏,等. 氮沉降对草地凋落物分解的影响研究进展[J]. 植物生态学报,2017, 41(8):894-913.[22] 叶彦辉, 刘云龙, 韩艳英, 等. 氮沉降对西藏高山灌丛草甸土壤理化性质的短期影响[J]. 草地学报, 2017, 25(5): 973-981. [23] LONG M, WU H H, SMITH M D, et al. Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland[J]. Plant and Soil, 2016, 408(1/2): 475-484. [24] HALL S J, MATSON P A. Nitrogen oxide emissions after nitrogen additions in tropical forests[J]. Nature, 1999, 400(6740): 152. [25] HORSWILL P, OSULLIVAN O, PHOENIX G, et al. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition[J]. Environmental Pollution, 2008, 155(2): 336-349. [26] 刘晨阳, 陶宝先, 董杰, 等. 不同形态氮输入对黄河三角洲芦苇湿地土壤有机碳矿化的影响[J]. 滨州学院学报, 2019,35(2):57-66. [27] 邱雪丽. 改变碳输入对亚热带-暖温带气候过渡区三种林型土壤碳组分的影响[D]. 郑州:河南大学, 2019. [28] 张扬, 裴亚蒙, 任昊晔,等. 模拟氮沉降对长白山兴安落叶松林土壤有机碳库的短期影响[J]. 林业科技, 2019, 44(3):26-29. [29] 祁瑜, 段雷, 黄永梅. 模拟氮沉降对克氏针茅草原土壤有机碳的短期影响[J]. 生态学报, 2015, 35(4):1104-1113. [30] CULLINGS K W, NEW M H, MAKHIJA S, et al. Effects of litter addition on ectomycorrhizal associates of a lodgepole pine (pinus contorta) stand in Yellowstone National Park[J]. Applied and Environmental Microbiology, 2003, 69(7):3772-3776. [31] JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5):315-322. [32] TIAN J, WEI K, CONDRON L M, et al. Impact of land use and nutrient addition on phosphatase activities and their relationships with organic phosphorus turnover in semi-arid grassland soils[J]. Biology and Fertility of Soils, 2016, 52(5):675-683. [33] 齐玉春, 彭琴, 董云社, 等. 温带典型草原土壤总有机碳及溶解性有机碳对模拟氮沉降的响应[J]. 环境科学, 2014, 35(8): 3073-3082. [34] 祁瑜, 段雷, 黄永梅,等. 模拟氮沉降对克氏针茅草原土壤有机碳的短期影响[J]. 生态学报, 2015, 35(4): 1104-1113. [35] 付宇童, 高珊, 王伟全,等. 纳米富勒烯对土壤酶活性和微生物群落的影响[J]. 环境科学学报, 2020, 40(1):242-250. [36] 李祎宸. 哈尔滨林地土壤生物化学性质及其对人为干扰的响应[D]. 哈尔滨:哈尔滨师范大学, 2019. [37] 向泽宇,王长庭,宋文彪,等. 草地生态系统土壤酶活性研究进展[J]. 草业科学,2011, 28(10):1801-1806. [38] HENRY H, JUAREZ J D, FIELD C B, et al. Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland[J]. Global Change Biology, 2005, 11(10): 1808-1815. [39] 郭永盛, 李鲁华, 危常州, 等. 施氮肥对新疆荒漠草原生物量和土壤酶活性的影响[J]. 农业工程学报, 2011, 27(S1):249-256. [40] 施瑶. 氮沉降对内蒙古温带草原土壤酶活性影响的试验研究[D]. 长春:东北师范大学, 2014. [41] 张俊梅. 松嫩草地土壤酶活性对模拟氮沉降组分变化的响应[D]. 长春:东北师范大学, 2017. [42] 周嘉聪, 刘小飞, 郑永, 等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响[J]. 生 态 学 报, 2017, 37(1): 127-135. [43] 李春越, 郝亚辉, 薛英龙, 等. 长期施肥对黄土旱塬农田土壤微生物量碳、氮、磷的影响[J]. 农业环境科学学报, 2020,4(7):1-5. [44] GEISSELER D, LAZICKI P A, SCOW K M . Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops[J]. Applied Soil Ecology, 2016, 106:1-10. [45] 朱瑞芬, 唐凤兰, 刘杰淋, 等. 羊草草甸草原土壤微生物生物量碳氮对短期施氮的响应[J]. 草地学报, 2016(3):553-558. [46]  DIJKSTRA F A , HOBBIE S E , REICH P B , et al. Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment[J]. Plant and Soil, 2005, 272(1/2):41-52. [47] 梁百艳. 松嫩草地在模拟增温和氮沉降前后土壤微生物生物量对比研究[D]. 长春:东北师范大学, 2013. [48] CLEGG C D. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils[J]. Applied Soil Ecology, 2006, 31(1/2):73-82. [49] JOERGENSEN R G, EMMERLING C. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 295-309. [50] 闫钟清,齐玉春,李素俭,等. 降水和氮沉降增加对草地土壤微生物与酶活性的影响研究进展[J]. 微生物学通报,2017, 44(6):1481-1490. [51] 张海芳, 刘红梅, 赵建宁, 等. 贝加尔针茅草原土壤真菌群落结构对氮素和水分添加的响应[J]. 生态学报, 2018, 38(1):195-205. [52] ZHANG X, GUO H, LI Z, et al. Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species[J]. European Journal of Medicinal Chemistry, 2015, 101: 419-430. [53] ZHANG X, HAN X. Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland[J]. Journal of Environmental Sciences, 2012(8):132-140. [54] XIAO S, XUE K, HE Z, et al. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities[R]. Shanghai:Office of Scientific and Technical Information Technical Reports, 2011. [55] 刘红梅, 张爱林, 皇甫超河,等. 氮沉降增加对贝加尔针茅草原土壤微生物群落结构的影响[J]. 生态环境学报, 2017(7):35-40. [56] 周嘉聪, 刘小飞, 郑永,等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响[J]. 生态学报, 2017(37):127-135. [57] 李宗明,沈菊培,张丽梅,等. 模拟氮沉降对干旱半干旱温带草原土壤细菌群落结构的影响[J]. 环境科学, 2018 ,39(12):5665-5671. [58] 何亚婷, 齐玉春, 董云社, 等. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010(8):99-107. [59] CHON K, CHANG J, LEE E, et al. Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands[J]. Ecological Engineering 2011,37(1): 64-69. [60] ZHANG X, LIU W, SCHLOTER M, et al. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes[J]. PLOS One, 2013, 8(10): e76500. [61] ENWALL K, PHILIPPOT L, HALLIN S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization[J]. Application Environment Microbiology, 2005, 71(12): 8335-8343. [62] LI J, LIN S, TAUBE F, et al. Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia[J]. Plant and Soil, 2011, 340(1/2):253-264. [63] 陈永亮. 环境因子对温带典型草原土壤中氨氧化菌和AM真菌群落的影响[D]. 北京:中国科学院大学, 2014. [64] NING Q S,GU Q,SHEN J P, et al. Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China[J]. Journal of Soils and Sediments, 2015, 15(3):694-704.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-12-16作者简介:王肖已,硕士研究生。E-mail:2768654454@qq.com *通讯作者:姚槐应,博士,教授。E-mail:hyyao@iue.ac.cn引文格式:王肖已,姚槐应,李杏. 草地土壤生态系统对氮沉降响应的研究进展[J]. 武汉工程大学学报,2020,42(3):276-281.
更新日期/Last Update: 2020-07-09