|本期目录/Table of Contents|

[1]喻九阳,陈 琦,林 纬*,等.垂直平板电极电化学除垢的气-液流动研究[J].武汉工程大学学报,2020,42(03):338-344.[doi:10.19843/j.cnki.CN42-1779/TQ.201910033]
 YU Jiuyang,CHEN Qi,LIN Wei*,et al.Gas-Liquid Flow of Electrochemical Descaling with Vertical Plate Electrode[J].Journal of Wuhan Institute of Technology,2020,42(03):338-344.[doi:10.19843/j.cnki.CN42-1779/TQ.201910033]
点击复制

垂直平板电极电化学除垢的气-液流动研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年03期
页码:
338-344
栏目:
机电与信息工程
出版日期:
2023-03-14

文章信息/Info

Title:
Gas-Liquid Flow of Electrochemical Descaling with Vertical Plate Electrode
文章编号:
1674 - 2869(2020)03 - 0338 - 06
作者:
喻九阳陈 琦林 纬*汪 威王众浩夏文凤
化工装备强化与本质安全湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
YU Jiuyang CHEN Qi LIN Wei* WANG WeiWANG Zhonghao XIA Wenfeng
Hubei Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety(Wuhan Institute of Technology), Wuhan 430205 ,China
关键词:
电化学除垢气泡传质垂直电极
Keywords:
electrochemistry descaling bubble mass transfer vertical electrode
分类号:
TQ085
DOI:
10.19843/j.cnki.CN42-1779/TQ.201910033
文献标志码:
A
摘要:
为研究电化学除垢方法中垂直平板电极反应器的气-液流动特性及其对除垢的影响规律,利用粒子图像测速技术分别研究了电解电压和溶液硬度的变化对垂直平板电极间流场的影响。实验结果表明:垂直平板电极间的流动主要分为气泡上浮推动溶液流动形成的气泡驱动对流和电极周围的高空隙率引起溶液向电极流动的自然对流。在0~30 V的电压下产生的气泡驱动对流的速度不超过0.01 m/s,自然对流的最大速度不超过0.001 5 m/s。流场内溶液对流主要受气泡运动的影响,适当增大电极板产生的气泡量可以强化气泡驱动对流,但过量的气泡聚集在极板周围会减弱气泡驱动对流强度,增大溶液电阻,不利于污垢从溶液中分离。这对于探索反应器中的气-液两相流行为以及优化电化学除垢方法有重要意义。
Abstract:
In order to study the gas-liquid flow characteristics of the vertical plate electrode reactor in the electrochemical descaling method and its influence on descaling, the particle image velocimetry technique was used to study the influence of the electrolytic voltage and solution hardness on the flow field between vertical plate electrodes. The experimental results show that the flow between the vertical plate electrodes is mainly divided into the bubble-driven convection and the natural convection. The former convection is formed by the floating of air bubbles. The latter convection is caused by the high porosity around the electrode, which leads to the solution flowing to the electrode. The velocity of bubble-driven convection generated at low voltage of 0 -30 V does not exceed 0.01 m/s, and the maximum speed of natural convection does not exceed 0.001 5 m/s. The convection of the solution in the flow field is mainly affected by the movement of bubbles. Increasing the amount of bubbles generated by the electrode plate appropriately can strengthen the bubble-driven convection, but the accumulation of excessive bubbles around the electrode plate will weaken the strength of the bubble-driven convection. Additionally, increasing the resistance of the solution will make the dirt difficult to be separated from the solution. The above findings are of great significance for exploring the gas-liquid two-phase flow behavior of the reactor and helpful for optimizing the electrochemical descaling method.

参考文献/References:

[1] HASSON D , CORNEL A . Effect of residence time on the degree of CaCO3 precipitation in the presence of an anti-scalant[J]. Desalination, 2016, 401(1):64-67. [2] GLADE H , ULRICH J . Influence of solution composition on the formation of crystalline scales[J]. Chemical Engineering & Technology, 2003, 26(3):277-281. [3] AMY G , GHAFFOUR N , LI Z , et al. Membrane- based seawater desalination: present and future prospects[J]. Desalination, 2016, 401:16-21. [4] LI X , SHEMER H , HASSON D , et al. Characterization of the effectiveness of anti-scalants in suppressing scale deposition on a heated surface[J]. Desalination, 2016, 397:38-42. [5] SANJUAN I, GARCIAGARCIA V, EXPOSITO E, et al. Paired electrolysis for simultaneous electrochemical water softening and production of weak acid solutions[J]. Electrochemistry Communications,2019,101: 88-92. [6] 鄢明雄,程航,喻九阳,等. 电流密度对电化学阻垢性能的影响[J]. 武汉工程大学学报,2019,41(6):517-522. [7] 徐浩, 延卫, 汤成莉. 电子水处理技术[J]. 工业水处理, 2009(8):5-9. [8] HASSON D , LUMELSKY V , GREENBERG G , et al. Development of the electrochemical scale removal technique for desalination applications[J]. Desalination, 2008, 230(1):329-342. [9] ABDELOUAHED L, VALENTIN G, PONCIN S, et al. Current density distribution and gas volume fraction in the gap of lantern blade electrodes[J]. Chemical Engineering Research & Design: Transactions of the Inst, 2014, 92(3):559-570. [10] HREIZ R, ABDELOUAHED L, F?NFSCHILLING D, et al. Electrogenerated bubbles induced convection in narrow vertical cells: PIV measurements and Euler- Lagrange CFD simulation[J]. Chemical Engineering Science, 2015, 134:138-152. [11] MAT M D, ALDAS K. Application of a two-phase flow model for natural convection in an electrochemical cell[J]. International Journal of Hydrogen Energy, 2005, 30(4): 411-420. [12] ALEXIADIS A , DUDUKOVIC M P , RAMACHANDRAN P , et al. Liquid-gas flow patterns in a narrow electrochemical channel[J]. Chemical Engineering Science, 2011, 66(10):2252-2260. [13] ALEXIADIS A , DUDUKOVIC M P , RAMACHANDRAN P , et al. Transition to pseudo-turbulence in a narrow gas-evolving channel[J]. Theoretical and Computational Fluid Dynamics, 2012, 26(6):551-564. [14] ALEXIADIS A , DUDUKOVIC M P , RAMACHANDRAN P, et al. On the stability of the flow in multi- channel electrochemical systems[J]. Journal of Applied Electrochemistry, 2012, 42(9):679-687. [15] ZHU J , ZHANG X H, LV P Y , et al. An experimental investigation of convective mass transfer characteri- zation in two configurations of electrolysers[J]. International Journal of Hydrogen Energy, 2018, 43(18):8632-8643. [16] SANJUAN I, BENAVENTE D, EXPOSITO E, et al. Electrochemical water softening: influence of water composition on the precipitation behaviour[J]. Separation and Purification Technology,2019,211: 857-865. [17] YU Y , JIN H , MENG P , et al. Electrochemical water softening using air-scoured washing for scale detachment[J]. Separation and Purification Technology, 2018, 191:216-224. [18] JIANU O A , ROSEN M A , NATERER G F , et al. Two-phase bubble flow and convective mass transfer in water splitting processes[J]. International Journal of Hydrogen Energy, 2015, 40(11):4047-4055.

相似文献/References:

[1]段颖姗,陈云,王营茹,等.羟基铁交联累托石电化学处理苯酚废水[J].武汉工程大学学报,2012,(4):35.
 DUAN Ying\|shan,CHEN Yun,WANG Ying\|ru,et al.Electrochemical treating phenol wastewater with hydroxy\|ferrum cross\|linked rectorite[J].Journal of Wuhan Institute of Technology,2012,(03):35.
[2]李丽荣,王营茹,明银安*,等.亚甲基蓝模拟废水的电化学处理[J].武汉工程大学学报,2012,(06):34.[doi:103969/jissn16742869201206009]
 LI Li\|rong,WANG Ying\|ru,MING Yin\|an,et al.Electrochemical treatment of methylene blue in simulation wastewater[J].Journal of Wuhan Institute of Technology,2012,(03):34.[doi:103969/jissn16742869201206009]
[3]杨 文,陆 慧,张 芳,等.甲基橙修饰石墨烯的制备及电容性能[J].武汉工程大学学报,2015,37(05):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
 ,,et al.Preparation and capacitive properties of methyl orange modified graphene[J].Journal of Wuhan Institute of Technology,2015,37(03):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
[4]于 聪,沈裕强,万佳琪,等.氮/氧与氮/硫双原子混杂六并苯的合成及光电性能[J].武汉工程大学学报,2019,(03):226.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 004]
 YU Cong,SHEN Yuqiang,WAN Jiaqi,et al.Synthesis and Optical-Electrical Properties of N/O and N/S Heteroatom-Containing Hexacene[J].Journal of Wuhan Institute of Technology,2019,(03):226.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 004]
[5]鄢明雄,程 航,喻九阳,等.电流密度对电化学阻垢性能的影响[J].武汉工程大学学报,2019,(06):517.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 002]
 YAN Mingxiong,CHENG Hang,YU Jiuyang,et al.Effect of Current Density on Electrochemical Scale Inhibition Performance[J].Journal of Wuhan Institute of Technology,2019,(03):517.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 002]

备注/Memo

备注/Memo:
收稿日期:2019-10-25基金项目:国家自然科学基金(50976080);武汉工程大学科学研究基金(K201630);武汉工程大学第十届研究生教育创新基金(CX2018183)作者简介:喻九阳,硕士,教授。E-mail:yjy@wit.edu.cn*通讯作者:林 纬,博士,副教授。E-mail:linwei@wit.edu.cn 引文格式:喻九阳,陈琦,林纬,等. 垂直平板电极电化学除垢的气-液流动研究[J]. 武汉工程大学学报,2020,42(3):338-344.
更新日期/Last Update: 2020-07-09