|本期目录/Table of Contents|

[1]黄金莎,代姝函,徐 莉*,等.蛋白质工程改造脂肪酶对映选择性的研究进展[J].武汉工程大学学报,2021,43(02):119-126.[doi:10.19843/j.cnki.CN42-1779/TQ. 202108012]
 HUANG Jinsha,DAI Shuhan,XU Li*,et al.Advances in Enhancing Lipase Enantioselectivity by Protein Engineering[J].Journal of Wuhan Institute of Technology,2021,43(02):119-126.[doi:10.19843/j.cnki.CN42-1779/TQ. 202108012]
点击复制

蛋白质工程改造脂肪酶对映选择性的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年02期
页码:
119-126
栏目:
综述
出版日期:
2021-04-30

文章信息/Info

Title:
Advances in Enhancing Lipase Enantioselectivity by Protein Engineering
文章编号:
1674 - 2869(2022)02 - 0119 - 08
作者:
黄金莎代姝函徐 莉*闫云君*
华中科技大学生命科学与技术学院,分子生物物理教育部重点实验室(华中科技大学),湖北 武汉 430074
Author(s):
HUANG Jinsha DAI Shuhan XU Li* YAN Yunjun*
School of Life Science and Technology, Huazhong University of Science and Technology;Key Laboratory of Molecular Bio-physics (Huazhong University of Science and Technology), Wuhan 430074, China
关键词:
脂肪酶对映选择性催化裂缝关键突变位点外消旋底物拆分蛋白质工程
Keywords:
lipaseenantioselectivity catalytic cleft key mutation sites racemic substratesresolution protein engineering
分类号:
Q93-335
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202108012
文献标志码:
A
摘要:
脂肪酶已被广泛应用于手性化合物拆分,但天然脂肪酶催化效率低、对非天然底物的选择性较差。为满足工业应用需求,开发具有高效对映体选择性的脂肪酶具有十分重要的意义;当前通过蛋白质工程改造获取高效脂肪酶已成为主流策略。鉴于脂肪酶催化受化学反应的环境影响较大,系统分析了脂肪酶与外消旋底物作用的关键区域(酰基结合口袋、疏水腔、亲水腔和氧阴离子洞)特性,重点综述了近年外消旋羧酸和外消旋醇拆分反应中影响脂肪酶对映选择性的重要突变位点相关研究进展。相比于传统从自然界中筛选具有特定选择性脂肪酶资源方法,蛋白质工程,特别是计算机辅助的理性设计,能大幅缩短脂肪酶进化历程,且能使其朝着预设方向进化。可以预期,随着运用蛋白质工程改造脂肪酶对映选择性研究的进一步深入发展,将可实现特定外消旋化合物的酶法高效手性拆分,也可为定向开发具特殊活性的生物催化剂提供新的研究思路。
Abstract:
Lipases have been widely used in the resolution of commercially significant chiral compounds. Unfortunately, the catalytic efficiency and specific selectivity of natural lipases towards non-native substrates are not ideal. To broaden their industrial applications, it is significant to develop catalysts with more effective enantioselectivity. Nowadays, designing and screening lipases with desired selectivity via protein engineering has been becoming a mainstream strategy. Herein, considering that the catalytic properties of lipases would be greatly affected by their unique catalytic clefts, we systematically analyzed the characteristics of the key domains (acyl binding pocket, hydrophobic crevice, hydrophilic trench and oxyanion holes) interacting with racemic substrates. Special emphasis was laid on the key mutation sites which affects lipase enantioselectivity in resolution of racemic carboxylic acid and racemic alcohol. In comparison with the traditional method of screening lipases from environment, the evolution process could be significantly shortened by the strategy of protein engineering, especially via computer-aided rational design. As expected, with the in-depth development of protein engineering in lipase modification, a highly efficient resolution towards targeted racemic compounds would be achieved, and further providing a feasible approach for preparing other tailor-made biocatalysts.

参考文献/References:

[1] SONI S. Trends in lipase engineering for enhanced biocatalysis[J]. Biotechnology and Applied Bio-chemistry, 2022, 69 (1): 265-272.[2] ALBAYATI S H, MASOMIAN M, ISHAK S N H,et al. Main structural targets for engineering lipase substrate specificity[J]. Catalysts, 2020, 10(7): 747.[3] SARMAH N, REVATHI D, SHEELU G, et al. Recent advances on sources and industrial applications of lipases[J]. Biotechnology Progress, 2018, 34(1): 5-28. [4] GAMAYUROVA V S, ZINOV’ EVA M E, SHNAIDER K L, et al. Lipases in esterification reactions: a review[J]. Catalysis in Industry, 2021, 13: 58-72.[5] KOGA Y, KATO K, NAKANO H, et al. Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression[J]. Journal of Molecular Biology,2003, 331(3): 585-592. [6] PLEISS J, FISCHER M, SCHMID R D. Anatomy of lipase binding sites: the scissile fatty acid binding site[J]. Chemistry and Physics of Lipids, 1998, 93(1/2): 67-80.[7] CHEN H, MENG X, XU X Q, et al. The molecular basis for lipase stereoselectivity[J]. Applied Microbiology and Biotechnology,2018,102(8): 3487-3495. [8] 张锟, 曲戈, 刘卫东, 等. 工业酶结构与功能的构效关系[J]. 生物工程学报, 2019, 35(10):1806-1818.[9] XIONG W, LIU B, SHEN Y J, et al. Protein engineering design from directed evolution to de novo synthesis[J]. Biochemical Engineering Journal, 2021, 174: 108096.[10] 蔡海莺, 王珍珍, 张婷, 等. 微生物脂肪酶资源挖掘研究进展[J]. 食品科学, 2018, 39(7): 337-345.[11] 崔颖璐, 吴边. 计算机辅助蛋白结构预测及酶的计算设计研究进展[J]. 广西科学,2017,24(1):1-6.[12] LIU Q, XUN G H, FENG Y. The state-of-the-art strategies of protein engineering for enzyme stabilization[J]. Biotechnology Advances, 2019, 37(4): 530-537. [13] KORENDOVYCH I V. Rational and semirational protein design[M]. Methods in Molecular Biology, 2018, 1685: 15-23.[14] SILVA AMATTO I V, ROSA-GARZON N G, OLIVEIRA SIM?ES F A, et al. Enzyme engineering and its industrial applications. Biotechnology and Applied Biochemistry, 2021, 11(7): 1-21.[15] QU G, LI A T, ACEVEDO-ROCHA C G, et al. The crucial role of methodology development in directed evolution of selective enzymes[J]. Angewandte Chemie(International Edition),2020,59(32):13204-13231. [16] 陈珏,黄佳敏,燕天鹤,等. 随机突变文库构建与筛选研究进展[J].生物工程学报,2021,37(1):163-177.[17] CADWELL R C, JOYCE G F. Randomization of genes by PCR mutagenesis[J]. PCR Methods & Applications, 1992, 2(1): 28-33. [18] STEMMER W P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22): 10747-10751. [19] REETZ M T, ZONTA A, SCHIMOSSEK D C K, et al. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution[J]. Angewandte Chemie (International Edition), 1997, 36(24): 2830-2832. [20] MARKEL U, ESSANI K D, BESIRLIOGLU V, et al. Advances in ultrahigh-throughput screening for directed enzyme evolution[J]. Chemical Society Reviews, 2020, 49(1): 233-262. [21] REETZ M T. Biocatalysis in organic chemistry and biotechnology: past, present, and future[J]. Journal of the American Chemical Society, 2013, 135(34): 12480-12496. [22] RUSSELL H, BARBARA K, RANDALL S. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions[J]. Nucleic Acids Research, 1988, 16(15): 7351-7367. [23] LI G L, XU L, ZHANG H J, et al. A De Novo designed esterase with p-Nitrophenyl acetate hydrolysis activity[J]. Molecules, 2020, 25(20): 4658.[24] MOHARANA T R, RAO N M. Substrate structure and computation guided engineering of a lipase for omega-3 fatty acid selectivity[J]. PLoS One, 2020, 15(4): e0231177.[25] REETZ M T, BOCOLA M, CARBALLEIRA JD, et al. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test[J]. Angewandte Chemie International Edition, 2005, 44(27): 4192-4196. [26] ACEVEDO-ROCHA C G, HOEBENREICH S, REETZ M T. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution[M]. Methods in Molecular Biology,2014,1179:103-128. [27] SUN Z T, LONSDALE R, ILIE A, et al. Catalytic asymmetric reduction of difficult-to-reduce ketones: triple code saturation mutagenesis of an alcohol dehydrogenase[J]. ACS Catalysis, 2016, 6(3): 1598-1605.[28] SUN Z T, LONSDALE R, WU L, et al. Structure-guided triple-code saturation mutagenesis: efficient tuning of the stereoselectivityof an epoxide hydrolase[J]. ACS Catalysis, 2016, 6(3): 1590-1597.[29] LI D Y, WU Q, REETZ M T. Focused rational iterative site-specific mutagenesis (FRISM)(M). Methods in Enzymology, 2020, 643: 225-242.[30] XU J, CEN Y X, SINGH W, et al. Stereodivergent protein engineering of a lipase to access all possible stereoisomers of chiral esters with two stereocenters[J]. Journal of the American Chemical Society, 2019, 141(19): 7934-7945. [31] SCHULZ T, PLEISS J, SCHMID R D. Stereoselec-tivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model[J]. Protein Science, 2010, 9(6): 1053-1062. [32] 蔡玉贞, 白巧燕, 苏敏, 等. 脂肪酶底物结合口袋的分子改造策略及进展[J]. 生物技术通报, 2020, 36(11): 173-179.[33] BORNSCHEUER U T,KAZLAUSKAS R J. Lipases and esterases: sections 5.1-5.2[M]. Berlin:WileyVCH Verlag GmbH & Co. KGaA, 2006. [34] GU J L, LIU J, YU H W. Quantitative prediction of enantioselectivity of Candida antarctica lipase B by combining docking simulations and quantitative structure-activity relationship (QSAR) analysis[J]. Journal of Molecular Catalysis B: Enzymatic, 2011, 72(3/4): 238-247.[35] WU Q, SONI P, REETZ M T. Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope[J]. Journal of the American Chemical Society,2013,135(5):1872-1881. [36] QIN B, LIANG P, JIA X, et al. Directed evolution of Candida antarctica lipase B for kinetic resolution of profenesters[J]. Catalysis Communications, 2013, 38: 1-5. [37] SHEN J W, QI J M, ZHANG X J, et al. Significantly increased catalytic activity of Candida antarctica lipase B for the resolution of cis (+/-)- dimethyl 1-acetylpiperidine-2, 3-dicarboxylate[J]. Catalysis Science & Technology, 2018, 8(18): 4718-4725. [38] MARíA P D,CARBONI-OERLEMANS C,TUIN B, et al. Biotechnological applications of Candida antarctica lipase A: state-of-the-art[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 37(1/2/3/4/5/6): 36-46. [39] ENGSTR?M K, NYHLéN J, SANDSTR?M A G, et al. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of α-substituted esters[J]. Journal of the American Chemical Society, 2010, 132(20): 7038-7042. [40] FRUSHICHEVA M P, WARSHEL A. Towards quantitative computer-aided studies of enzymatic enantioselectivity: the case of Candida antarctica lipase A[J]. ChemBioChem,2012,13(2): 215-223. [41] HIROSE Y, KARIYA K, NAKANISHI Y. Inversion of enantioselectivity in hydrolysis of 1, 4-dihydropyridines by point mutation of lipase PS[J]. Tetrahedron Letters, 1995, 36(7): 1063-1066.[42] PRASAD  S, BOCOLA  M, REETZ  M  T. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis[J]. Chemphyschem,2011,12(8): 1550-1557. [43] NI Z, ZHOU P, JIN X. Integrating in silico and in vitro approaches to dissect the stereoselectivity of Bacillus subtilis lipase a toward ketoprofen vinyl ester[J]. Chemical Biology & Drug Design, 2011, 78(2): 301-308. [44] MANETTI F, MILETO D, CORELLI F, et al. Design and realization of a tailor-made enzyme to modify the molecular recognition of 2-arylpropionic esters by Candida rugosa lipase[J]. Biochimica Et Biophysica Acta, 2000, 1543(1): 146-158. [45] BORDES F, CAMBON E, DOSSAT-LéTISSE V, et al. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site[J]. ChemBioChem, 2009, 10(10): 1705-1713. [46] LIU D N, TRODLER P, EIBEN S, et al. Rational design of Pseudozyma antarctica lipase B yielding a general esterification catalyst[J]. Chembiochem, 2010, 11(6): 789-795. [47] EMA T, FUJII T, OZAKI M, et al. Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism[J]. Chemical Communications, 2005, 37: 4650-4651. [48] EMA T, KAMATA S, TAKEDA M, et al. Rational creation of mutant enzyme showing remarkable enhancement of catalytic activity and enantioselectivity toward poor substrates[J]. Chemical Communications,2010,46(30):5440-5442. [49] EMA T, NAKANO Y, YOSHIDA D, et al. Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: manipulation of the transition state[J]. Organic & Biomolecular Chemistry,2012,10(31):6299-6308. [50] AILEEN F S, NIKOLAJ O, THORSTEN E, et al. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution[J]. Protein Engineering Design & Selection, 2005, 18(11): 509-514. [51] QIAN Z, FIELDS C J, LUTZ S. Investigating the structural and functional consequences of circular permutation on lipase B from Candida antarctica[J]. Chembiochem, 2007, 8(16): 1989-1996.[52] L?FGREN J, G?RBE T, OSCHMANN M, et al. Transesterification of a tertiary alcohol by engineered Candida antarctica lipase?A[J]. Chembiochem, 2019, 20(11):1438-1443. [53] CHEN H, WU J P, YANG L R, et al. Improving Pseudomonas alcaligenes lipase’s diastereopreference in hydrolysis of diastereomeric mixture of menthyl propionate by site-directed mutagenesis[J]. Biotechnology and Bioprocess Engineering, 2014, 19(4): 592-604.[54] WIJMA H J, FLOOR R J, BJELIC S, et al. Enantioselective enzymes by computational design and in silico screening[J]. AngewandteChemie (International Edition), 2015, 54(12): 3726-30. [55] KHERSONSKY O, LIPSH R, AVIZEMER Z, et al. Automated design of efficient and functionally diverse enzyme repertoires[J]. Molecular Cell, 2018, 72(1): 178-186.[56] ST-JACQUES A D, MARIE-èVE C E,CHICA R A. Computational design of multi-substrate enzyme specificity[J]. ACS Catalysis, 2019,9(6):5480-5485.

相似文献/References:

[1]柯彩霞,徐德蛟,闫云君*,等.生物酶法拆分手性药物的研究进展[J].武汉工程大学学报,2016,38(06):517.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 001]
 KE Caixia,XU Dejiao,YAN Yunjun*,et al.Advance in Enzymatic Resolution of Chiral Drugs[J].Journal of Wuhan Institute of Technology,2016,38(02):517.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 001]

备注/Memo

备注/Memo:
收稿日期:2021-08-25基金项目:国家自然科学基金(31971206) 作者简介:黄金莎,博士研究生。E-mail: huangjinsha@hust.edu.cn*通讯作者:徐 莉,博士,副教授。E-mail: xuli@hust.edu.cn闫云君,博士,教授。E-mail:yanyunjun@hust.edu.cn引文格式:黄金莎,代姝函,徐莉,等. 蛋白质工程改造脂肪酶对映选择性的研究进展[J]. 武汉工程大学学报,2022,44(2):119-126.
更新日期/Last Update: 2022-04-28