|本期目录/Table of Contents|

[1]许 晨,邓 勇,李 亮*.金属硫化物及其复合材料在超级电容器领域的研究进展[J].武汉工程大学学报,2021,43(02):127-133.[doi:10.19843/j.cnki.CN42-1779/TQ.202103012]
 XU Chen,DENG Yong,LI Liang*.Research Progress in Metal Sulfide and Composites in Field of Supercapacitor[J].Journal of Wuhan Institute of Technology,2021,43(02):127-133.[doi:10.19843/j.cnki.CN42-1779/TQ.202103012]
点击复制

金属硫化物及其复合材料在超级电容器领域的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年02期
页码:
127-133
栏目:
综述
出版日期:
2021-04-30

文章信息/Info

Title:
Research Progress in Metal Sulfide and Composites in Field of Supercapacitor
文章编号:
1674 - 2869(2022)02 - 0127 - 07
作者:
许 晨邓 勇李 亮*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
XU ChenDENG YongLI Liang*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
超级电容器过渡金属硫化物复合材料导电聚合物
Keywords:
supercapacitor transition metal sulfide composite materials conducting polymer
分类号:
O613
DOI:
10.19843/j.cnki.CN42-1779/TQ.202103012
文献标志码:
A
摘要:
随着人们对于清洁能源要求的不断提高,超级电容器以具有超高比电容、高功率密度和长循环等特点引起人们的研究兴趣。超级电容器已经被应用在许多工业领域中。电极材料是决定超级电容器性能的重要因素之一。过渡金属硫化物因其具有独特的电子结构和多型性的特征被广泛用作为电极材料,但其在电化学循环过程中,容易产生穿梭效应和体积变化破坏电极材料的结构,导致倍率性能差、稳定性降低。本文综述金属硫化物的概况及其与石墨烯、碳纳米管、导电聚合物构建复合材料的最新发展,利用水热法、湿化学法,或者电化学法制备金属硫化物与不同组分的复合材料,可改善金属硫化物的电导率与倍率性能。在后续研究中,需要探索更简便、成本较低的方法制备具有分级纳米结构的高性能金属硫化物复合材料。
Abstract:
With the continuous improvement of the requirements for clean energy,supercapacitors have attracted tremendous research interest due to their characteristics of ultra-high specific capacitance,high power density and long cycle. Supercapacitors have been widely used in many industrial fields. The electrode material is one of the most important factors to determine the performance of the supercapacitor. Transition metal sulfides have attracted much attention because of their unique electronic structures and polymorphisms. However,in the electrochemical cycle process,the shuttle effect and volume change inevitably occur to destroy the structure of the electrode material,resulting in poorer rate capacity and lower stability. In this paper,the progress of metal sulfide and its composite materials with graphene,carbon nanotube,or conducting polymers were reviewed. The composites of metal sulfide and other components have been prepared through hydrothermal method,wet-chemical or electrochemical methods,which improve the electric conductivity and rate capacity of metal sulfide. In the future,the easier and cheaper methods are required to prepare metal sulfide composites with hierarchical nanostructure and high performance.

参考文献/References:

[1] WANG F X, WU X W, YUAN X H ,et al. Latest advances in supercapacitors:from new electrode materials to novel device designs [J]. Chemical Society Reviews,2017,46(22):6816-6854. [2] 郭慰彬,陈嘉炼,刘金玲,等. 超级电容器用碳基电极材料研究进展[J]. 电子元件与材料,2019,38(1):1-8. [3] IRO Z S,SUBRAMANI C,DASH S S. A brief review on electrode materials for supercapacitor [J]. International Journal of Electrochemical Science,2016,11(12):10628-10643. [4] THEERTHAGIRI J,SENTHIL R A,NITHYADHAR-SENI P,et al. Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage [J]. Ceramics International,2020,46(10):14317-14345. [5] GU W T,YUSHIN G. Review of nanostructured carbon materials for electrochemical capacitor applications:advantages and limitations of activated carbon,carbide-derived carbon,zeolite-templated carbon,carbon aerogels,carbon nanotubes,onion-like carbon,and graphene [J]. WIREs:Energy and Environment,2014,3(5):424-473. [6] FIC K, PLATEK A, PIWEK J, et al. Sustainable materials for electrochemical capacitors [J]. Materials Today,2018,21(4):437-454. [7] WANGY F, ZHANG L, HOU H Q, et al. Recent progress in carbon-based materials for supercapacitor electrodes:a review [J]. Journal of Materials Science,2021,56(1):173-200. [8] GóMEZ-URBANO J L, MORENO-FERNáDEZ G,ARNAIZ M,et al. Graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors [J]. Carbon,2020,162:273-282. [9] SUN M Q, WANG G C, LI X W, et al. Irradiation preparation of reduced graphene oxide/carbon nanotube composites for high-performance supercapacitors [J]. Journal of Power Sources,2014,245:436-444. [10] ZHANG Y H, CAO X J,LI Z W, et al. Co-assembly of functional graphene and multiwall carbon nanotubes for supercapacitors by a vertical deposition technique [J]. Applied Physics A,2016,122(6):575:1-7. [11] GOVINDASAMY M,WANG S F,KUMARAVEL S,et al. Facile synthesis of copper sulfide decorated reduced graphene oxide nanocomposite for high sensitive detection of toxic antibiotic in milk [J]. Ultrasonics Sonochemistry,2019,52:382-390. [12] ZHU Y R, WU Z B, JING M J,et al. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors [J]. Journal of Power Sources,2015,273:584-590. [13] RAMACHANDRAN R, SARANYA M, KOLLU P,et al. Solvothermal synthesis of zinc sulfide decorated graphene(ZnS/G) nanocomposites for novel supercapacitor electrodes [J]. Electrochimica Acta,2015,178:647-657. [14] CHANG J L, ZANG S Q, LIANG W F, et al. Enhanced faradic activity by construction of p-n junction within reduced graphene oxide@cobalt nickel sulfide@nickle cobalt layered double hydroxide composite electrode for charge storage in hybrid supercapacitor [J]. Journal of Colloid and Interface Science,2021,590:114-124. [15] CHEN F, JI Y J, REN F Y, et al. Three-dimensional hierarchical core-shell CuCo2O4@Co(OH)2 nanoflakes as high-performance electrode materials for flexible supercapacitors [J]. Journal of Colloid and Interface Science,2021,586:797-806. [16] NASKAR P,MAITI A,CHAKRABORTY P,et al. Chemical supercapacitors:a review focusing on metallic compounds and conducting polymers [J]. Journal of Materials Chemistry A,2021,9(4):1970-2017. [17] SOWMIYA G, VELRAJ G. Designing a ternary composite of PPy-PT/TiO2 using TiO2,and multipart-conducting polymers for supercapacitor application [J]. Journal of Materials Science: Materials in Electronics,2020,31(17):14287-14294. [18] NA R Q,LU N,LI L B,et al. A robust conductive polymer network as a multi-functional binder and conductive additive for supercapacitors [J]. ChemElectroChem,2020,7(14):3056-3064. [19] GONG H M, HAO X Q, LI H Y, et al. A novel materials manganese cadmium sulfide/cobalt nitride for efficiently photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2021,585:217-228. [20] KANADE C K,SEOK H,KANADE V K,et al. Low-temperature and large-scale production of a transition metal sulfide vertical heterostructure and its application for photodetectors [J]. ACS Applied Materials & Interfaces,2021,13(7):8710-8718. [21] ZHANG J C,ZHANG D J,ZHANG R C,et al. Facile synthesis of mesoporous and thin-walled Ni-Co sulfide nanotubes as efficient electrocatalysts for oxygen evolution reaction [J]. ACS Applied Energy Materials,2018,1(2):495-502. [22] LI X T,WAN Y Y,WU X J. First-principles study of ultrathin molybdenum sulfides nanowires:electronic and catalytic hydrogen evolution properties [J]. Chinese Journal of Chemical Physics,2019,32(2):267-272. [23] ZHAO S M,LI J L,CHEN H X,et al. Synthesis of Bi2S3/MoS2 nanorods and their enhanced electrochemical performance for aluminum ion batteries [J]. Journal of Electrochemical Energy Conversion and Storage,2019,17(3):031010:1-8. [24] ZHANG X, DING P, SUN Y F, et al. CoMoS3.13 nanosheets grafted on B,N co-doped graphene nanotubes as bifunctional catalyst for efficient water electrolysis [J]. Journal of Alloys and Compounds,2018,731:403-410. [25] TONG H, BAI W L, YUE S H, et al. Zinc cobalt sulfide nanosheets grown on nitrogen-doped graphene/carbon nanotube film as a high-performance electrode for supercapacitors [J]. Journal of Materials Chemistry A,2016,4(29):11256-11263. [26] SUN Y L,HUANG C Q,SHEN J L,et al. One-step construction of a transition-metal surface decorated with metal sulfide nanoparticles:ahigh-efficiency electrocatalyst for hydrogen generation [J]. Journal of Colloid and Interface Science,2020,558:1-8. [27] MOHAMMADI A, ARSALANI N, TABRIZI A G,et al. Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors [J]. Chemical Engineering Journal,2018,334:66-80. [28] WEI Z M, LI B, XIA C X, et al. Various structures of 2D transition-metal dichalcogenides and their applications [J]. Small Methods,2018,2(11):1800094:1-19. [29] ZHOU M F,WANG W H,LU J P,et al. How defects influence the photoluminescence of TMDCs [J]. Nano Research,2021,14(1):29-39. [30] PUJARI R B,LOKHANDE A C,SHELKE A R,et al. Chemically deposited nano grain composed MoS2 thin films for supercapacitor application [J]. Journal of Colloid and Interface Science,2017,496:1-7. [31] LIANG A Q,ZHU D H,XU L M,et al. Fabrication of flexible PVA/polyaniline/WS2 composite film and its high capacitance behaviors [J]. International Journal of Electrochemical Science,2020,15(10):10541-10549. [32] LONKAR S P,PILLAI V V,PATOLE S P,et al. Scalable in situ synthesis of 2D-2D-type graphene wrapped SnS2 nanohybrids for enhanced supercapacitor and electrocatalytic applications [J]. ACS Applied Energy Materials,2020,3(5):4995-5005. [33] MAYORGA-MARTINEZ C C,AMBROSI A,ENG A Y S,et al. Transition metal dichalcogenides(MoS2,MoSe2,WS2 and WSe2) exfoliation technique has strong influence upon their capacitance [J]. Electrochemistry Communications,2015,56:24-28. [34] BISSETT M A, WORRALL S D, KINLOCH I A,et al. Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors [J]. Electrochimica Acta,2016,201:30-37. [35] LIN J H,ZHONG Z X,WANG H H,et al. Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type electrode for high-performance supercapattery [J]. Journal of Power Sources,2018,407:6-13. [36] SHEN L F,YU L,WU H B,et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties [J]. Nature Communications,2015,6:6694:1-8. [37] LI L,HUI K S,HUI K N,et al. Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors [J]. Journal of Materials Chemistry A,2017,5(37):19687-19696. [38] CHIA X Y, ENG A Y S, AMBROSI A, et al. Electrochemistry of nanostructured layered transition-metal dichalcogenides [J]. Chemical Reviews,2015,115(21):11941-11966. [39] WU J, SHI X L, SONG W J, et al. Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4(M=Ni,Fe,Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors [J]. Nano Energy,2018,45:439-447. [40] NEUPANE G P,TRAN M D,YUN S J,et al. Simple chemical treatment to n-dope transition-metal dichalcogenides and enhance the optical and electrical characteristics [J]. ACS Applied Materials & Interfaces,2017,9(13):11950-11958. [41] CHEN H C, JIANG J J,ZHAO Y D,et al. One-pot synthesis of porous nickel cobalt sulphides:tuning the composition for superior pseudocapacitance [J]. Journal of Materials Chemistry A,2015,3(1):428-437. [42] CAI W H, LAI T, LAI J W, et al. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density [J]. Scientific Reports,2016,6:26890:1-9. [43] PENG X,CAO H L,QIN Z H,et al. A simple and scalable strategy for preparation of high density graphene for high volumetric performance supercapacitors [J]. Electrochimica Acta,2019,305:56-63. [44] HUANG K J, ZHANG J Z, LIU Y, et al. Synthesis of reduced graphene oxide wrapped-copper sulfide hollow spheres as electrode material for supercapacitor [J]. International Journal of Hydrogen Energy,2015,40(32):10158-10167. [45] DE B, KUILA T, KIM N H, et al. Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor [J]. Carbon,2017,122:247-257. [46] LU J H, LIAN F, GUAN L L,et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages [J]. Journal of Materials Chemistry A,2019,7(3):991-997. [47] WANG Y F, ZHAO S X, YU L, et al. Design of multiple electrode structure based on nano Ni3S2 and carbon nanotubes for high performance supercapacitor [J]. Journal of Materials Chemistry A,2019,7(13):7406-7414. [48] NIAZ N A, SHAKOOR A, IMRAN M, et al. Enhanced electrochemical performance of MoS2/PPy nanocomposite as electrodes material for supercapacitor applications [J]. Journal of Materials Science:Materials in Electronics,2020,31(14):11336-11344. [49] LIU Y P, QI X H, LI L, et al. MOF-derived PPy/carbon-coated copper sulfide ceramic nanocomposite as high-performance electrode for supercapacitor [J]. Ceramics International,2019,45(14):17216-17223. [50] WANG L, BO M L, GUO Z C, et al. Construction of ultra-stable trinickeldisulphide(Ni3S2)/polyaniline (PANI) electrodes based on carbon fibers for high performance flexible asymmetric supercapacitors [J]. Journal of Colloid and Interface Science,2020,577:29-37. [51] LIU X B, WU Z P, YIN Y H. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors [J]. Chemical Engineering Journal,2017,323(4):330-339.

相似文献/References:

[1]杨 文,陆 慧,张 芳,等.甲基橙修饰石墨烯的制备及电容性能[J].武汉工程大学学报,2015,37(05):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
 ,,et al.Preparation and capacitive properties of methyl orange modified graphene[J].Journal of Wuhan Institute of Technology,2015,37(02):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
[2]张阐娟,文小玲*,李康康,等.超级电容器恒压充电的控制策略研究[J].武汉工程大学学报,2016,38(1):82.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 015]
 ZHANG Chanjuan,WEN Xiaoling*,LI Kangkang,et al.Constant Voltage Control Scheme of Super Capacitor Charging[J].Journal of Wuhan Institute of Technology,2016,38(02):82.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 015]
[3]朱 芬,张新敏,佘 潇,等.氮掺杂石墨烯凝胶的制备与表征[J].武汉工程大学学报,2016,38(3):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
 ZHU Fen,ZHANG Xinmin,SHE Xiao,et al.Preparation and Characterization of Nitrogen-Doped Grapheme Hydrogel[J].Journal of Wuhan Institute of Technology,2016,38(02):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
[4]朱珍妮,熊惠之,喻湘华,等.氮掺杂石墨烯/聚苯胺复合凝胶的制备与性能[J].武汉工程大学学报,2017,39(05):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
 ZHU Zhenni,XIONG Huizhi,YU Xianghua,et al. Preparation of Nitrogen-Doped Graphene/Polyaniline Composite Hydrogels and Their Performance[J].Journal of Wuhan Institute of Technology,2017,39(02):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
[5]李 阳,邱唯楚,蔡 卓,等.聚吡咯/石墨烯复合水凝胶的制备与性能[J].武汉工程大学学报,2018,40(05):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]
 LI Yang,QIU Weichu,CAI Zhuo,et al.Preparation and Properties of Polypyrrole/Graphene Compoiste Hydrogels[J].Journal of Wuhan Institute of Technology,2018,40(02):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]
[6]郭 畅,郑葛花,张媛媛,等.多孔石墨烯的制备及其在超级电容器中的应用[J].武汉工程大学学报,2019,(02):103.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 001]
 GUO Chang,ZHENG Gehua,ZHANG Yuanyuan,et al.Fabrication of Holey Graphene and Its Application in Supercapacitors[J].Journal of Wuhan Institute of Technology,2019,(02):103.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 001]
[7]杨清银,吕 彦,李 成,等.聚苯胺水凝胶衍生碳/二氧化锰复合材料的合成与电化学性能[J].武汉工程大学学报,2021,43(05):514.[doi:10.19843/j.cnki.CN42-1779/TQ.202012002]
 YANG Qingyin,Lü Yan,LI Cheng,et al.Synthesis of Polyaniline Hydrogel Derived Carbon/Manganese Dioxide Composite and Their Electrochemical Performance[J].Journal of Wuhan Institute of Technology,2021,43(02):514.[doi:10.19843/j.cnki.CN42-1779/TQ.202012002]
[8]陈惠燕,何明宏,李 亮*,等.三维硫氮双掺杂石墨烯/二氧化锰复合水凝胶的制备及性能研究[J].武汉工程大学学报,2022,44(03):282.[doi:10.19843/j.cnki.CN42-1779/TQ.202008026]
 CHEN Huiyan,HE Minghong,LI Liang*,et al.Preparation and Properties of Three Dimensional S/N-Codoped Graphene/MnO2 Composite Hydrogels[J].Journal of Wuhan Institute of Technology,2022,44(02):282.[doi:10.19843/j.cnki.CN42-1779/TQ.202008026]

备注/Memo

备注/Memo:
收稿日期:2021-03-16基金项目:湖北高校2020年国家级大学生创新创业训练计划项目(202010490010)作者简介:许 晨,硕士研究生。E-mail:790241674@qq.com*通讯作者:李 亮,博士,教授。E-mail:msell08@163.com引文格式:许晨,邓勇,李亮. 金属硫化物及其复合材料的研究与在超级电容器领域的研究进展[J]. 武汉工程大学学报,2022,44(2):127-133.
更新日期/Last Update: 2022-04-28