|本期目录/Table of Contents|

[1]曾 真,王为国*,罗旌崧,等.恒馏出液组成常规间歇精馏过程模拟的数值计算误差[J].武汉工程大学学报,2021,43(02):134-142.[doi:10.19843/j.cnki.CN42-1779/TQ.202111005]
 ZENG Zhen,WANG Weiguo*,LUO Jingsong,et al.Numerical Calculation Errors of Simulating Conventional Binary Batch Distillation Process with Constant Distillate Composition Operation[J].Journal of Wuhan Institute of Technology,2021,43(02):134-142.[doi:10.19843/j.cnki.CN42-1779/TQ.202111005]
点击复制

恒馏出液组成常规间歇精馏过程模拟的数值计算误差(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年02期
页码:
134-142
栏目:
化学与化学工程
出版日期:
2021-04-30

文章信息/Info

Title:
Numerical Calculation Errors of Simulating Conventional Binary Batch Distillation Process with Constant Distillate Composition Operation
文章编号:
1674 - 2869(2022)02 - 0134 - 09
作者:
曾 真1 王为国*2 罗旌崧2 覃远航2 王存文2 赵子傲1
1.武汉工程大学机电工程学院,湖北 武汉 430205;2.武汉工程大学化工与制药学院, 教育部绿色化学过程教育部重点实验室(武汉工程大学);湖北省新型反应器与绿色化学工艺重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
ZENG Zhen1 WANG Weiguo*2 LUO Jingsong2 QIN Yuanhang2 WANG Cunwen2ZHAO Ziao1
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China;2. Key Laboratory of Green Chemical Process(Wuhan Institute of Technology) , Ministry of Education; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology), Wuhan 430205, China
关键词:
常规间歇精馏恒馏出液组成模拟数值计算误差
Keywords:
conventional batch distillation constant distillate composition simulation numerical calculation error
分类号:
TQ015
DOI:
10.19843/j.cnki.CN42-1779/TQ.202111005
文献标志码:
A
摘要:
为了完善间歇精馏过程的模拟技术,研究了模拟间歇精馏过程的数值计算误差及其相对稳定定量方法。采用拟稳态法模拟理想条件下恒馏出液组成操作常规二元间歇精馏过程,总汽化量数值计算结果的误差是截断误差、舍入误差和传播误差的耦合。根据大数定律,提出了理论板有限时,总汽化量数值计算结果误差的近似计算方法,及提出了采用拟合法计算Richardson外推法的误差系数。拟合法通过拟合足够多组总汽化量的数值计算结果和相应的过程离散段数计算误差系数,有效降低了(或消除)随机误差(舍入误差和传播误差)对计算误差系数的影响,提高了Richardson外推法估计截断误差的准确(稳定)性。
Abstract:
To improve the simulation technology of batch distillation process, the numerical calculation errors of simulating batch distillation process and its relatively stable quantitative method were studied. The quasi-steady-state method was used to simulate the process of conventional binary batch distillation with constant distillate composition operation under ideal conditions. The errors of the numerical calculation result of the total vaporization are the coupling of truncation errors, rounding errors and propagation errors. According to the law of large numbers, an approximate calculation method for the errors of the numerical calculation results of the total vaporization was proposed when the number of theoretical plates was limited, and a fitting method was proposed to calculate the error coefficient of Richardson’s extrapolation method. The fitting method of calculating the error coefficients by fitting enough sets of the numerical calculation results of the total vaporization and the corresponding number of discrete segments of the process effectively reduces (or eliminates) the influence of random errors (rounding errors and propagation errors) on the calculation of the error coefficients, and improves the accuracy (stability) of Richardson’s extrapolation method for estimating the truncation errors.

参考文献/References:

[1] ROSE A, JOHNSON R C, WILLIAMS T J. Batch fractional distillation. calculated and experimental curves for batch distillation with appreciable holdup[J]. Industrial & Engineering Chemistry,1950, 42(10): 2145-2149.[2] HUCKABA C E, DANLY D E. Calculation procedures for binary batch rectification[J]. AIChE Journal, 1960, 6(2): 335-342.[3] DISTEFANO G P. Mathematical modeling and numerical integration of multicomponent batch distillation equations[J]. AIChE Journal, 1968, 14(1): 190-199.[4] DISTEFANO G P. Stability of numerical integration techniques[J]. AIChE Journal, 1968, 14(6): 946-955.[5] GALLUN S E, HOLLAND C D. Gear’s procedure for the simultaneous solution of differential and algebraic equations with application to unsteady state distillation problems[J]. Computers & Chemical Engineering, 1982, 6(3): 231-244.[6] SADOTOMO H, MIYAHARA K. Calculation procedure of multicomponent batch distillation[J]. Kagaku Kogaku Ronbunshu, 1983, 23(1): 56-64.[7] CHO Y S, JOSEPH B. Reduced-order steady-state and dynamic models for separation processes. Part I. Development of the model reduction procedure[J]. AIChE Journal, 1983, 29(2): 261-269.[8] GALINDEZ H, FREDNSLUND A A. Simulation of multicomponent batch distillation processes[J]. Computers & Chemical Engineering, 1988, 12(4): 281-288.[9] MCCABE W L, SMITH J C, HARRIOTT P.Unit Operations of Chemical Engineering[M]. 6th ed. New York: McGraw-Hill, 2001.[10] 陈敏恒,丛德滋,方图南,等. 化工原理:下[M].3版. 北京:化学工业出版社,2006.[11] 王为国,曾真,毕亚凡. 二元混合物塔顶累积全回流间歇精馏的最小气化总量[J]. 化工学报,2001,52(5): 460-463.[12] 王为国,吴元欣,王存文, 等. 恒回流比间歇精馏的最小回流比计算及其能耗分析[J].化工学报, 2004, 55(8): 1285-1290.[13] 王为国, 王存文, 吴元欣, 等. 二元常规间歇精馏的最小汽化总量[J]. 化工学报, 2006, 57(11): 2647-2651.[14] 王为国, 曾真, 毕亚凡, 等. “全回流”间歇精馏塔顶贮槽内液体流动时的混合[J]. 化工学报, 2002, 53(8): 857-861.[15] 王为国, 王存文, 吴元欣, 等. 二元混合物“全回流”间歇精馏的能耗[J]. 化工学报, 2004, 55(9): 1474-1480.[16] 王为国, 曾真, 王存文, 等. 二元塔顶累积全回流间歇精馏塔最少理论板数的近似计算[J]. 石油化工, 2011, 40(11): 1205-1210.[17] 王为国, 曾真, 覃远航, 等. 恒再沸比提馏式间歇精馏的最小再沸流比与能耗分析[J]. 化工学报, 2012, 63(7): 2106-2112. [18] 王为国, 罗旌崧, 曾真, 等. 二元提馏式间歇精馏的优化操作与最小汽化总量[J]. 化工学报, 2015, 66(10): 4047-4060.[19] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 4版. 北京: 高等教育出版社, 2008.[20] ROACHE P J.Verification and Validation In Computa-tional Science and Engineering[M]. New Mexico: Hermosa, 1998.[21] 李庆扬,王能超,易大义 .数值分析[M].4版. 北京:清华大学出版社,2001.[22] 时钧, 汪家鼎, 余国琮, 等. 化学工程手册:下[M].2版. 北京: 化学工业出版社,1996.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-11-07 基金项目:湖北省教育厅科研项目(2003A01)作者简介:曾 真,硕士,副教授。E-mail:zengzhen415@126.com*通讯作者:王为国,硕士,副教授。E-mail:wang19630123@163.com引文格式:曾真, 王为国, 罗旌崧, 等.恒馏出液组成常规间歇精馏过程模拟的数值计算误差[J]. 武汉工程大学学报,2022,44(2):134-142.
更新日期/Last Update: 2022-04-28