|本期目录/Table of Contents|

[1]雷 德,蔡 璐*.压缩二氧化碳和甲基吡咯烷酮剥离石墨烯的分子动力学模拟[J].武汉工程大学学报,2023,45(01):48-55.[doi:10.19843/j.cnki.CN42-1779/TQ.202201006]
 LEI De,CAI Lu*.Molecular Dynamics Simulation of Graphene Exfoliation in MixedSolvent of Compressed Carbon Dioxide and Methylpyrrolidon[J].Journal of Wuhan Institute of Technology,2023,45(01):48-55.[doi:10.19843/j.cnki.CN42-1779/TQ.202201006]
点击复制

压缩二氧化碳和甲基吡咯烷酮剥离
石墨烯的分子动力学模拟
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年01期
页码:
48-55
栏目:
材料科学与工程
出版日期:
2023-02-28

文章信息/Info

Title:
Molecular Dynamics Simulation of Graphene Exfoliation in Mixed
Solvent of Compressed Carbon Dioxide and Methylpyrrolidon
文章编号:
1674 - 2869(2023)01 - 0048 - 08
作者:
雷 德1蔡 璐*12
1. 武汉工程大学材料科学与工程学院,湖北 武汉 430205;
2. 等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
LEI De1CAI Lu*12
1. School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China;
2. Hubei Key Laboratory of Plasma Chemistry and Advanced Materials (Wuhan Institute of Technology),
Wuhan 430205,China

关键词:
石墨烯压缩二氧化碳分子动力学模拟剥离溶剂分子个数比温度压强
Keywords:
graphene compressed carbon dioxidemolecular dynamics simulationexfoliationsolvent molecular number ratio temperature pressure

分类号:
O648
DOI:
10.19843/j.cnki.CN42-1779/TQ.202201006
文献标志码:
A
摘要:
通过分子动力学模拟,研究在压缩二氧化碳(CO2)和有机溶剂混合溶剂体系中液相剥离石墨烯的重要环境参数,包括CO2和甲基吡咯烷酮的分子个数比、体系的温度以及环境压强对石墨烯剥离的影响。通过对设置了不同参数的体系中溶剂分子的插层速度以及解吸附能的表征和比较,结果表明,CO2和甲基吡咯烷酮个数比为3.5∶1~5.5∶1,温度在300 K以上,压强为10~19 MPa时,更有利于获得高的剥离产率。该研究结果有利于压缩CO2与有机溶剂体系剥离石墨烯选择合适的环境变量以获得更高的产率和单层率及少层率。

Abstract:
This paper studies the important parameters in the liquid-phase graphene-exfoliation systems with a mixture solvent of compressed carbon dioxide(CO2) and organic solvent,including the effect of molecule number ratio of CO2 and methylpyrrolidone,the temperature and pressure of the system on graphene exfoliation by molecular dynamics simulation. The intercalation velocity and desorption energy of solvent molecules in systems with different parameter settings were characterized and compared, and the simulation results show that high yield could be achieved in graphene exfoliation,with the molecular number ratio of CO2 to methylpyrrolidone in the range of 3.5∶1-5.5∶1,the temperature above 300 K and the pressure in the range of 10-19 MPa. The results of this study are more beneficial to choosing proper solvent, temperature and pressure for the experimental study of graphene exfoliation in compressed CO2 and organic solvent system to gain high yield, monolayer and few-layer contents.

参考文献/References:

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V,et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.

[2] XU T, YANG D Z, ZHANG S Y, et al. Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks [J]. Carbon,2021,171:201-210.
[3] ZHU Y B,WANG Y C,WU B,et al. Micromechanical landscape of three-dimensional disordered graphene networks [J]. Nano Letters,2021,21(19):8401-8408.
[4] SUZUKI D,OKAMOTO T,LI J X,et al. Terahertz and infrared response assisted by heat localization in nanoporous graphene [J]. Carbon,2021,173:403-409.
[5] BROWNSON D A C,KAMPOURIS D K,BANKS C E. An overview of graphene in energy production and storage applications [J]. Journal of Power Sources,2011,196(11):4873-4885.
[6] ZHANG H C, GRUNER G, ZHAO Y L. Recent advancements of graphene in biomedicine [J]. Journal of Materials Chemistry B,2013,1(20):2542-2567.
[7] KASAR A K,XIONG G P,MENEZES P L. Graphene-reinforced metal and polymer matrix composites [J]. JOM,2018,70(6):829-836.
[8] ZHU Z Z. An overview of carbon nanotubes and graphene for biosensing applications [J]. Nano-Micro Letters,2017,9(3):1-24.
[9] SUTTER P W,FLEGE J I,SUTTER E A. Epitaxial graphene on ruthenium [J]. Nature Materials,2008,7(5):406-411.
[10] HUANG H, CHEN W, CHEN S, et al. Bottom-up growth of epitaxial graphene on 6H-SiC (0001) [J]. ACS Nano,2008,2(12):2513-2518.
[11] NOVOSELOV K S,JIANG D,SCHEDIN F,et al. Two-dimensional atomic crystals [J]. Proceedings of the National Academy of Sciences,2005,102(30):10451-10453.
[12] VALLéS C, DRUMMOND C,SAADAOUI H,et al. Solutions of negatively charged graphene sheets and ribbons [J]. Journal of the American Chemical Society,2008,130(47):15802-15804.
[13] CIESIELSKI A,SAMORI P. Graphene via sonication assisted liquid-phase exfoliation [J]. Chemical Society Reviews,2014,43(1):381-398.
[14] HERNANDEZ Y, NICOLOSI V, LOTYA M,et al. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nature Nanotechnology,2008,3(9):563-568.
[15] COLEMAN J N. Liquid-phase exfoliation of nanotubes and graphene [J]. Advanced Functional Materials,2009,19(23):3680-3695.
[16] KHAN U, O’NEILL A, LOTYA M, et al. High-concentration solvent exfoliation of grapheme [J]. Small,2010,6(7):864-871.
[17] COLEMAN J N. Liquid exfoliation of defect-free graphene [J]. Accounts of Chemical Research,2013,46(1):14-22.
[18] CHEN J P,SHI W L,FANG D,et al. A binary solvent system for improved liquid phase exfoliation of pristine graphene materials [J]. Carbon,2015,94:405-411.
[19] BOURLINOS A B,GEORGAKILAS V,ZBORIL R,et al. Liquid-phase exfoliation of graphite towards solubilized graphenes [J]. Small,2009,5(16):1841-1845.
[20] LIU C Q, HU G X. Effect of nitric acid treatment on the preparation of graphene sheets by supercritical N,N-dimethylformamide exfoliation [J]. Industrial & Engineering Chemistry Research,2014,53(37):14310-14314.
[21] RANGAPPA D,SONE K J,WANG M S,et al. Rapid and direct conversion of graphite crystals into high-yielding,good-quality graphene by supercritical fluid exfoliation [J]. Chemistry——A European Journal,2010,16(22):6488-6494.
[22] GAI Y Z, WANG W C, XIAO D,et al. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene:simulation and experiment [J]. Ultrasonics Sonochemistry,2018,41:181-188.
[23] SUN Z Y,FAN Q, ZHANG M L,et al. Supercritical fluid-facilitated exfoliation and processing of 2D materials [J]. Advanced Science,2019,6(18):1901084:1-34.
[24] XU Q Q, ZHAO W, ZHI J T, et al. Exfoliation of graphite in CO2 expanded organic solvents combined with low speed shear mixing [J]. Carbon,2018,135:180-186.
[25] XU X D, CAI L, ZHENG X L, et al. Molecular dynamics simulations of solvent-exfoliation and stabilization of graphene with the assistance of compressed carbon dioxide and pyrene-polyethylene glycol [J]. Physical Chemistry Chemical Physics,2017,19(24):16062-16070.
[26] CAI L,HOU S S, WEI X Y, et al. Exfoliation and stabilization mechanism of graphene in carbon dioxide expanded organic solvents:molecular dynamics simulations [J]. Physical Chemistry Chemical Physics,2020,22(4):2061-2072.
[27] CAI L,LI W X, TAN G S,et al. Effect of graphene sheet size on exfoliation process in CO2-expanded organic solvent:a molecular dynamics simulation [J]. Journal of Applied Physics,2020,128(3):034302:1-10.
[28] van der SPOEL D, LINDAHL E, HESS B, et al. GROMACS:fast,flexible,and free [J]. Journal of Computational Chemistry,2005,26(16):1701-1718.
[29] JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids [J]. Journal of the American Chemical Society,1996,118(45):11225-11236.
[30] CHENG A L, STEELE W A. Computer simulation of ammonia on graphite. I. Low temperature structure of monolayer and bilayer films [J]. The Journal of Chemical Physics,1990,92(6):3858-3866.
[31] HARRIS J G, YUNG K H. Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model [J]. The Journal of Physical Chemistry,1995,99(31):12021-12024.
[32] DARDEN T,YORK D,PEDERSEN L. Particle mesh Ewald:an N? log(N) method for Ewald sums in large systems [J]. The Journal of Chemical Physics,1993,98(12):10089-10092.
[33] BUSSI G,DONADIO D,PARRINELLO M. Canonical sampling through velocity rescaling [J]. The Journal of Chemical Physics,2007,126(1):14101:1-8.
[34] BERENDSEN H J C, POSTMA J P M, van GUNSTEREN W F,et al. Molecular dynamics with coupling to an external bath [J]. The Journal of Chemical Physics,1984,81(8):3684-3690.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-01-15
基金项目:国家自然科学基金(21704078)
作者简介:雷 德,硕士研究生。E-mail:1184509044@qq.com
*通讯作者:蔡 璐,博士,副教授。E-mail:cailu@wit.edu.com
引文格式:雷德,蔡璐. 压缩二氧化碳和甲基吡咯烷酮剥离石墨烯的分子动力学模拟[J]. 武汉工程大学学报,2023,45(1):48-55.
更新日期/Last Update: 2023-03-14