|本期目录/Table of Contents|

[1]陈思莹,张 慧,张 桥,等.植酸掺杂聚苯胺/碳纳米管复合热电薄膜的制备与表征[J].武汉工程大学学报,2023,45(02):175-180.[doi:10.19843/j.cnki.CN42-1779/TQ.202202010]
 CHEN Siying,ZHANG Hui,ZHANG Qiao,et al.Preparation and Characterization of Phytic Acid-Doped Polyaniline/Carbon Nanotubes Composite Thermoelectric Thin Films[J].Journal of Wuhan Institute of Technology,2023,45(02):175-180.[doi:10.19843/j.cnki.CN42-1779/TQ.202202010]
点击复制

植酸掺杂聚苯胺/碳纳米管复合热电薄膜的制备与表征(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年02期
页码:
175-180
栏目:
材料科学与工程
出版日期:
2023-04-30

文章信息/Info

Title:
Preparation and Characterization of Phytic Acid-Doped Polyaniline/Carbon Nanotubes Composite Thermoelectric Thin Films

文章编号:
1674 - 2869(2023)02 - 0175 - 06
作者:
陈思莹张 慧张 桥刘 辉杜飞鹏张云飞*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
CHEN SiyingZHANG HuiZHANG QiaoLIU HuiDU FeipengZHANG Yunfei*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
植酸掺杂聚苯胺单壁碳纳米管复合薄膜热电性能
Keywords:
phytic acid dopingpolyanilinesingle-walled carbon nanotubescomposite filmsthermoelectric properties

分类号:
O631;TB34
DOI:
10.19843/j.cnki.CN42-1779/TQ.202202010
文献标志码:
A
摘要:
以单壁碳纳米管(SWCNTs)为基体,掺入适量的植酸、苯胺与过硫酸铵,通过原位溶液聚合制得植酸掺杂聚苯胺/酸化单壁碳纳米管(PA/PANI/SWCNTs)热电复合薄膜。通过扫描电子显微镜、傅里叶变换红外光谱、拉曼光谱、X-射线衍射、X-光电子能谱、热重分析和热电仪器表征了复合薄膜的结构与性能。结果表明:植酸掺杂聚苯胺为珊瑚状形貌,掺入适量的植酸掺杂聚苯胺和适当的提升温度有助于提升单壁碳纳米管基热电薄膜的功率因子。当植酸掺杂聚苯胺与酸化单壁碳纳米管的质量比为2∶10,温度为125 ℃时,PA/PANI/SWCNTs的功率因子最高,为(95.9±1.5) μW/(m·K2),对应的Seebeck系数和电导率分别为(44.5±0.5) μV/K和(48.4±0.3) kS/m。

Abstract:
Single-walled carbon nanotubes (SWCNTs) were used as matrix, and phytic acid-doped polyaniline/single-walled carbon nanotubes (PA/PANI/SWCNTs) thermoelectric composite thin films were prepared by in-situ solution polymerization. The structures and properties of the composite films were characterized by scanning electron microscopy,Fourier transform infrared spectroscopy,Raman spectroscopy,X-ray diffractometry,X-ray photoelectron spectroscopy,thermogravimetric analysis and thermoelectric instrument analysis. The experimental results showed that phytic acid-doped polyaniline has coral-like morphology. Mixing a proper amount of phytic acid polyaniline and appropriately increasing temperature can improve the power factor of SWCNTs-based thermoelectric thin films. The maximum power factor of PA/PANI/SWCNTs is (95.9±1.5) μW/(m·K2) when the mass ratio of PA/PANI to A-SWCNTs is 2∶10 at 125 ℃,and the Seebeck coefficient is (44.5±0.5) μV/K,and the electrical conductivity is (48.4±0.3) kS/m.

参考文献/References:

[1] AVERY A D,ZHOU B H,LEE J,et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties [J]. Nature Energy,2016,1(4):16033:1-9.

[2] NUNNA R,QIU P F,YIN M J,et al. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs [J]. Energy & Environmental Science,2017,10(9):1928-1935.
[3] BLACKBURN J L,FERGUSON A J,CHO C,et al. Carbon-nanotube-based thermoelectric materials and devices [J]. Advanced Materials,2018,30(11):1704386:1-35.
[4] FAN W S,ZHANG Y C,GUO C Y,et al. Toward high thermoelectric performance for polypyrrole composites by dynamic 3-phase interfacial electropolymerization and chemical doping of carbon nanotubes [J]. Composites Science and Technology,2019,183:107794:1-5.
[5] ZHOU Y,LIU Y J,ZHOU X Y,et al. High performance p-type organic thermoelectric materials based on metalloporphyrin/single-walled carbon nanotube composite films [J]. Journal of Power Sources,2019,423:152-158.
[6] SUN T T,ZHOU B Y,ZHENG Q,et al. Stretchable fabric generates electric power from woven thermoelectric fibers [J]. Nature Communications,2020,11:572:1-10.
[7] LI S K,FAN T J,LIU X R,et al. Graphene quantum dots embedded in Bi2Te3 nanosheets to enhance thermoelectric performance [J]. ACS Applied Materials & Interfaces,2017,9(4):3677-3685.
[8] LIU H T,SUN Q,ZHONG Y,et al. High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering [J]. Nano Energy,2022,91:106706:1-9.
[9] TAN X,LIU Y C,LIU R,et al. Synergistical enhancement of thermoelectric properties in n-type Bi2O2Se by carrier engineering and hierarchical microstructure [J]. Advanced Energy Materials,2019,9(31):1900354:1-7.
[10] LIN C C,HUANG Y C,USMAN M,et al. Zr-MOF/polyaniline composite films with exceptional Seebeck coefficient for thermoelectric material applications [J]. ACS Applied Materials & Interfaces,2019,11(3):3400-3406.
[11] HAO L P,KANG J Y,SHI J L,et al. Enhanced thermoelectric performance of poly(3-substituted thiophene)/single-walled carbon nanotube composites via polar side chain modification [J]. Composites Science and Technology,2020,199:108359:1-7.
[12] WANG S C,ZHOU Y,LIU Y J,et al. Enhanced thermoelectric properties of polyaniline/polypyrrole/carbon nanotube ternary composites by treatment with a secondary dopant using ferric chloride [J]. Journal of Materials Chemistry C,2020,8(2):528-535.
[13] 饶曦,吴艳光,杜飞鹏. 碳纳米管/地质聚合物复合材料的制备及性能研究[J]. 武汉工程大学学报, 2018, 40(4):415-418.
[14] CHANG L T,YU T H, HUANG H H, et al. Electrolyte adsorption improved thermoelectric power of non-conductive polymer/carbon nanotubes composites [J]. Journal of Power Sources,2020,450:227651:1-6.
[15] SLOMA M,GLóD M A,WALPUSKI B. Printed flexible thermoelectric nanocomposites based on carbon nanotubes and polyaniline [J]. Materials,2021,14(15):4122:1-9.
[16] YAO Q,CHEN L D,ZHANG W Q,et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites [J]. ACS Nano,2010,4(4):2445-2451.
[17] WANG S C,LIU F W,GAO C M,et al. Enhancement of the thermoelectric property of nanostructured polyaniline/carbon nanotube composites by introducing pyrrole unit onto polyaniline backbone via a sustainable method [J]. Chemical Engineering Journal,2019,370:322-329.
[18] YIN S X,LU W T,WU X,et al. Enhancing thermoelectric performance of polyaniline/single-walled carbon nanotube composites via dimethyl sulfoxide-mediated electropolymerization [J]. ACS Applied Materials & Interfaces,2021,13(3):3930-3936.
[19] LI H,LIU Y L,LI P C,et al. Enhanced thermoelectric performance of carbon nanotubes/polyaniline composites by multiple interface engineering [J]. ACS Applied Materials & Interfaces,2021,13(5):6650-6658.
[20] JI J W,LI R,LI H Y,et al. Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors [J]. Composites Part B:Engineering,2018,155:132-137.
[21] BALLABIO M,ZHANG T,CHEN C,et al. Band-like charge transport in phytic acid-doped polyaniline thin films [J]. Advanced Functional Materials,2021,31(43):2105184:1-9.
[22] YAN B,CHEN Z H,CAI L, et al. Fabrication of polyaniline hydrogel:synthesis,characterization and adsorption of methylene blue [J]. Applied Surface Science,2015,356:39-47.
[23] BEN ALI M, WANGF Y Y,BOUKHERROUB R,et al. Phytic acid-doped polyaniline nanofibers-clay mineral for efficient adsorption of copper (II) ions [J]. Journal of Colloid and Interface Science,2019,553:688-698.
[24] ZHANG Y F,CHEN S Y,ZHANG H,et al. Fabrication of conjugated triblock copolymer/single-walled carbon nanotubes composite films with enhanced thermoelectric performance [J]. Composites Communications,2021,27:100883:1-6.

相似文献/References:

[1]李剑秋,黄志良*.掺Eu3+,Tb3+钨酸钙的共沉淀法制备及表征[J].武汉工程大学学报,2008,(04):76.
 LI Jian qiu,HUANG Zhi liang.Coprecipitation preparation and luminescence properties of calcium tungstate (CaWO4) doped with europium (Ⅲ) or terbium (Ⅲ)[J].Journal of Wuhan Institute of Technology,2008,(02):76.
[2]掺钡白钨矿型CaWO:Ba+荧光材料的制备与表征.掺钡白钨矿型CaWO4:Ba2+荧光材料的制备与表征[J].武汉工程大学学报,2008,(02):78.
 WANG Han,HUANG Zhiliang,LIU Yu.The preparation and token of the scheelite type of thefluorescent material CaWO4:Ba2+[J].Journal of Wuhan Institute of Technology,2008,(02):78.
[3]陈亚男,喻俊,黄志良*,等.Sr和Nd掺杂对La9.33(SiO4)6O2电解质性能的影响[J].武汉工程大学学报,2011,(09):39.
 CHEN Yanan,YU Jun,HUANG Zhiliang,et al.Influence of Sr and Nd doping on performance of apatite La9.33(SiO4)6O2 electrolyte[J].Journal of Wuhan Institute of Technology,2011,(02):39.
[4]苏含,汪建华,熊礼威,等.应用于半导体器件的掺杂纳米金刚石膜[J].武汉工程大学学报,2011,(10):68.
 SU Han,WANG Jian hua,XIONG Li wei,et al.Semiconductor application of doped nanocrystalline diamond film[J].Journal of Wuhan Institute of Technology,2011,(02):68.
[5]李文昭,黄志良*,陈常连,等.过渡元素掺杂固体电解质的制备及电性能[J].武汉工程大学学报,2016,38(4):350.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 008]
 LI Wenzhao,HUANG Zhiliang*,CHEN Changlian,et al.Preparation of Transition Elements Doped Solid Electrolyte and Its Electrical Properties[J].Journal of Wuhan Institute of Technology,2016,38(02):350.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 008]
[6]雷 红,李文昭,马 东,等.锌掺杂La9.33(SiO4)6O2电解质的制备与电导率研究[J].武汉工程大学学报,2018,40(04):400.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 010]
 LEI Hong,LI Wenzhao,MA Dong,et al.Preparation of Zn Doped La9.33(SiO4)6O2 Electrolyte and Its Conductivity[J].Journal of Wuhan Institute of Technology,2018,40(02):400.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 010]
[7]孔仕进,张占辉*,彭伟康,等.Na1.3Ca0.4-xSrxPO4:0.3Eu3+红色荧光粉的制备及发光性质[J].武汉工程大学学报,2018,40(06):637.[doi:10. 3969/j. issn. 16742869. 2018. 06. 010]
 KONG Shijin,ZHANG Zhanhui*,PENG Weikang,et al.Preparation of Red-Emitting Na1.3Ca0.4-xSrxPO4:0.3Eu3+ Phosphors and Their Luminescent Properties[J].Journal of Wuhan Institute of Technology,2018,40(02):637.[doi:10. 3969/j. issn. 16742869. 2018. 06. 010]
[8]周 佳,包 琪,戴武斌*,等.Ce3+/Tb3+双掺杂SrAl2Si2O8荧光粉的发光性能及其在测温领域的应用[J].武汉工程大学学报,2020,42(04):411.[doi:10.19843/j.cnki.CN42-1779/TQ.201909034]
 ZHOU Jia,BAO Qi,DAI Wubin*,et al.Optical Properties of Ce3+/Tb3+ Co-Doped SrAl2Si2O8 Phosphor for Temperature Sensing[J].Journal of Wuhan Institute of Technology,2020,42(02):411.[doi:10.19843/j.cnki.CN42-1779/TQ.201909034]
[9]赵周桥,胡 朴,潘冰冰,等.Na+掺杂对LiNi1/3Co1/3Mn1/3O2结构和电化学性质的影响[J].武汉工程大学学报,2021,43(04):402.[doi:10.19843/j.cnki.CN42-1779/TQ.202011016]
 ZHAO Zhouqiao,HU Pu,PAN Bingbing,et al.Effects of Sodium Ion Doping on Structure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2[J].Journal of Wuhan Institute of Technology,2021,43(02):402.[doi:10.19843/j.cnki.CN42-1779/TQ.202011016]
[10]邹义琪,胡 朴*,窦林涛,等.钠离子电池正极材料Na3.5Mn0.5V1.5(PO4)3的制备和电化学性能[J].武汉工程大学学报,2022,44(04):412.[doi:10.19843/j.cnki.CN42-1779/TQ.202112007]
 ZOU Yiqi,HU Pu*,DOU Lintao,et al.Preparation and Electrochemical Performance of Na3.5Mn0.5V1.5(PO4)3 as Cathode Material for Sodium-Ion Battery[J].Journal of Wuhan Institute of Technology,2022,44(02):412.[doi:10.19843/j.cnki.CN42-1779/TQ.202112007]

备注/Memo

备注/Memo:
收稿日期:2022-02-21
基金项目:国家自然科学基金(51803157);湖北省荆楚卓越计划项目(鄂教高办函〔2017〕6号)
作者简介:陈思莹,硕士研究生。E-mail: chensy0729@126.com
*通讯作者:张云飞,博士,副教授。E-mail:zyf3006@126.com
引文格式:陈思莹,张慧,张桥,等. 植酸掺杂聚苯胺/碳纳米管复合热电薄膜的制备与表征[J]. 武汉工程大学学报,2023,45(2):175-180.

更新日期/Last Update: 2023-05-04