|本期目录/Table of Contents|

[1]邓淏天,王学华*,石胜伟,等.锌溴电池电解液及电极材料研究进展[J].武汉工程大学学报,2024,46(01):27-37.[doi:10.19843/j.cnki.CN42-1779/TQ.202304009]
 DENG Haotian,WANG Xuehua*,SHI Shengwei,et al.Research progress in electrolyte and electrode materials forzinc-bromine batteries[J].Journal of Wuhan Institute of Technology,2024,46(01):27-37.[doi:10.19843/j.cnki.CN42-1779/TQ.202304009]
点击复制

锌溴电池电解液及电极材料研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年01期
页码:
27-37
栏目:
材料科学与工程
出版日期:
2024-03-12

文章信息/Info

Title:
Research progress in electrolyte and electrode materials for
zinc-bromine batteries
文章编号:
1674 - 2869(2024)01 - 0027 - 11
作者:
邓淏天王学华*石胜伟廖伟寒李世平徐 威
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
DENG HaotianWANG Xuehua*SHI ShengweiLIAO WeihanLI ShipingXU Wei
School of Materials Science and Engineering,Wuhan Institute of Technology, Wuhan 430205,China
关键词:
锌溴电池电解液正极材料负极材料隔膜
Keywords:
zinc-bromine battery electrolyte cathode material anode material membrane
分类号:
TM912
DOI:
10.19843/j.cnki.CN42-1779/TQ.202304009
文献标志码:
A
摘要:
锌溴电池因其低成本、长寿命的特点而适用于分布式储能及户用储能领域。本文对锌溴电池的电池结构、电解液和电极材料等方面的研究内容进行了较全面的综述。重点分析了不同电池结构的优劣,详细比较了不同电解液添加剂以及不同电极材料在改善电解液电导率、抑制锌枝晶生成、减少自放电和电池充放电性能方面的差异。通过对锌溴电池的循环稳定性以及充放电效率的对比,探讨了不同电解液添加剂及电极材料在锌溴电池中规模化应用的可行性。采用静态无膜锌溴电池是克服传统锌溴液流电池体积庞大、成本高的有效手段,但现有技术仍无法完全避免其自放电过程和锌枝晶的形成,因此优化设计合理的电池结构和开发性能优异的电解液添加剂是未来静态无膜锌溴电池的主要研究方向。

Abstract:
Zinc-bromine batteries are suitable for distributed energy storage and household energy storage because of their low cost and long life. In this paper,the research on the battery structure,electrolyte and electrode materials of zinc-bromine batteries was comprehensively reviewed. The advantages and disadvantages of different battery structures were analyzed. The differences between electrolyte additives and electrode materials in improving electrolyte conductivity,inhibiting zinc dendrite generation,reducing self-discharge and battery charge and discharge performance were compared in detail. By comparing the cycle stability and charge-discharge efficiency of zinc-bromine batteries,the feasibility of different electrolyte additives and electrode materials in large-scale applications in zinc-bromine batteries was investigated. We propose that the use of static membrane-free zinc-bromine batteries is an effective way of overcoming some drawbacks of traditional zinc-bromine flow batteries including?large volume and high cost,however,the existing technology can not completely prevent the self-discharge process and the formation of zinc dendrites. Therefore,optimizing the well-designed battery structure and developing electrolyte additives with excellent performance are the future research directions for static membrane-free zinc-bromine batteries.

参考文献/References:

[1] 张敏.欧盟的绿色经济:发展路径与前景展望[J].人民论坛·学术前沿,2017(4):79-84.

[2] 邹义琪,胡朴,窦林涛,等.钠离子电池正极材料Na3.5Mn0.5V1.5(PO4)3的制备和电化学性能[J].武汉工程大学学报,2022,44(4):412-416.
[3] SINGH P,JONSHAGEN B. Zinc-bromine battery for energy storage [J]. Journal of Power Sources,1991,35(4):405-410.
[4] YANG H B,MENG X L,YANG E D,et al. Effect of La addition on the electrochemical properties of secondary zinc electrodes [J]. Journal of the Electrochemical Society,2004,151(3):A389-A393.
[5] NOACK J,ROZNYATOVSKAYA N,HERR T,et al. The chemistry of redox-flow batteries [J]. Angewandte Chemie(International Edition),2015,54(34):9776-9809.
[6] BECK F,RüETSCHI P. Rechargeable batteries with aqueous electrolytes [J]. Electrochimica Acta,2000,45(15/16):2467-2482.
[7] BISWAS S,SENJU A,MOHR R,et al. Minimal architecture zinc-bromine battery for low cost electrochemical energy storage [J]. Energy & Environmental Science,2017,10(1):114-120.
[8] LEX P J,MATTHEWS J F. Recent developments in zinc/bromine battery technology at Johnson Controls [C]//IEEE 35th International Power Sources Symposium. Cherry Hill,NJ,USA:IEEE,1992:88-92.
[9] KE X Y,PRAHL J M,ALEXANDER J I D,et al. Rechargeable redox flow batteries:flow fields,stacks and design considerations [J]. Chemical Society Reviews,2018,47(23):8721-8743.
[10] LAI Q Z,ZHANG H M,LI X F,et al. A novel single flow zinc-bromine battery with improved energy density [J]. Journal of Power Sources,2013,235:1-4.
[11] ZHANG X X,WANG X K,QU G M,et al. Reversible solid-liquid conversion enabled by self-capture effect for stable nonflow zinc-bromine batteries [J/OL]. Green Energy & Environment,(2022-12-08)[2023-02-03]. https://www.sciencedirect.com/science/article/pii/S2468025722001789?via%3Dihub. Doi:10. 1016/ j.gee.2022.11.007.
[12] LEE J H,BYUN Y,JEONG G H,et al. High-energy efficiency membraneless flowless Zn-Br battery:utilizing the electrochemical-chemical growth of polybromides [J]. Advanced Materials,2019,31(52):1904524.
[13] LIU S Y,WU J,HUANG J Q,et al. A high-energy efficiency static membrane-free zinc-bromine battery enabled by a high concentration hybrid electrolyte [J]. Sustainable Energy & Fuels,2022,6(4):1148-1155.
[14] JANOSCHKA T,MARTIN N,HAGER M D,et al. An aqueous redox-flow battery with high capacity and power:the TEMPTMA/MV system [J]. Angewandte Chemie(International Edition),2016,55(46):14427-14430.
[15] HOOBIN P M,CATHRO K J,NIERE J O. Stability of zinc/bromine battery electrolytes [J]. Journal of Applied Electrochemistry,1989,19(6):943-945.
[16] CATHRO K J,CEDZYNSKA K,CONSTABLE D C,et al. Selection of quaternary ammonium bromides for use in zinc/bromine cells [J]. Journal of Power Sources,1986,18(4):349-370.
[17] CEDZYNSKA K. Properties of modified electrolyte for zinc-bromine cells [J]. Electrochimica Acta,1995,40(8):971-976.
[18] GAO L J,LI Z X,ZOU Y P,et al. A high-performance aqueous zinc-bromine static battery [J]. Iscience,2020,23(8):101348.
[19] LI X J,LI T Y,XU P C,et al. A complexing agent to enable a wide-temperature range bromine-based flow battery for stationary energy storage [J]. Advanced Functional Materials,2021,31(22):2100133.
[20] LANCRY E,MAGNES B Z,BEN-DAVID I,et al. New bromine complexing agents for bromide based batteries [J]. ECS Transactions,2013,53(7):107-115.
[21] KIM M, YUN D, JEON J. Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in zinc-bromide flow battery [J]. Journal of Power Sources,2019,438:227020.
[22] LEE Y, YUN D, PARK J, et al. An organic imidazolium derivative additive inducing fast and highly reversible redox reactions in zinc-bromine flow batteries [J]. Journal of Power Sources,2022,547:232007.
[23] 高禄杰. 水系锌溴静态电池及关键材料研究[D].长沙:湖南大学,2020.
[24] LIM H S,LACKNER A M,KNECHTLI R C. Zinc-bromine secondary battery [J]. Journal of the Electrochemical Society,1977,124(8):1154-1157.
[25] EIDLER P. Development of zinc/bromine batteries for load-leveling applications:phase 1 final report [R]. Albuquerque,New Mexico:Sandia National Laboratories,1999.
[26] CLARK N,EIDLER P,LEX P. Development of zinc/bromine batteries for load-leveling applications:phase 2 final report [R]. Sandia National Lab.(SNL-NM),Albuquerque,NM (United States);Sandia National Lab.(SNL-CA),Livermore,CA (United States):Sandia National Laboratories,1999.
[27] KIM D, JEON J. A Zn(ClO4)2 supporting material for highly reversible zinc-bromine electrolytes [J]. Bulletin of the Korean Chemical Society,2016,37(3):299-304.
[28] WU M C, ZHAO T S, JIANG H R, et al. High-performance zinc bromine flow battery via improved design of electrolyte and electrode [J]. Journal of Power Sources,2017,355:62-68.
[29] WU M C,ZHAO T S,WEI L,et al. Improved electrolyte for zinc-bromine flow batteries [J]. Journal of Power Sources,2018,384:232-239.
[30] ADITH R V, PANDIYAN NARESH R,MARIYAPPAN K,et al. An optimistic approach on flow rate and supporting electrolyte for enhancing the performance characteristics of Zn-Br2 redox flow battery [J]. Electrochimica Acta,2021,388:138451.
[31] WANG K L,PEI P C,MA Z, et al. Dendrite growth in the recharging process of zinc-air batteries [J]. Journal of Materials Chemistry A,2015,3(45):22648-22655.
[32] LU W J, XIE C X, ZHANG H M, et al. Inhibition of zinc dendrite growth in zinc-based batteries [J]. ChemSusChem,2018,11(23):3996-4006.
[33] MOSHTEV R V,ZLATILOVA P. Kinetics of growth of zinc dendrite precursors in zincate solutions [J]. Journal of Applied Electrochemistry,1978,8(3):213-222.
[34] ITO Y,NYCE M,PLIVELICH R,et al. Gas evolution in a flow-assisted zinc-nickel oxide battery [J]. Journal of Power Sources,2011,196(15):6583-6587.
[35] DUNDáLEK J, ?NAJDR I, LIBáNSKY O, et al. Zinc electrodeposition from flowing alkaline zincate solutions:role of hydrogen evolution reaction [J]. Journal of Power Sources,2017,372:221-226.
[36] SUN K E K,HOANG T K A,DOAN T N L,et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries [J]. ACS Applied Materials & Interfaces,2017,9(11):9681-9687.
[37] YANG H S,PARK J H,RA H W,et al. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery [J]. Journal of Power Sources,2016,325:446-452.
[38] CHLADIL L,?ECH O,SMEJKAL J,et al. Study of zinc deposited in the presence of organic additives for zinc-based secondary batteries [J]. Journal of Energy Storage,2019,21:295-300.
[39] GUO L B,GUO H, HUANG H L, et al. Inhibition of zinc dendrites in zinc-based flow batteries [J]. Frontiers in Chemistry,2020,8:557.
[40] LEE C W, SATHIYANARAYANAN K, EOM S W,et al. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives [J]. Journal of Power Sources,2006,159(2):1474-1477.
[41] BANIK S J,AKOLKAR R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive [J]. Journal of the Electrochemical Society,2013,160(11):D519-D523.
[42] 冯天明. 锌溴液流电池电解液性能的探究[D].杭州:浙江工业大学,2018.
[43] WEN Y H,WANG T,CHENG J,et al. Lead ion and tetrabutylammonium bromide as inhibitors of the growth of spongy zinc in single flow zinc/nickel batteries [J]. Electrochimica Acta,2012,59:64-68.
[44] WANG J M, ZHANG L, ZHANG C,et al. Effects of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions [J]. Journal of Power Sources,2001,102(1/2):139-143.
[45] MUNAIAH Y, DHEENADAYALAN S,RAGUPATHY P,et al. High-performance carbon nanotube-based electrodes for zinc bromine redox flow batteries [J]. ECS Journal of Solid-State Science and Technology,2013,2(10):M3182-M3186.
[46] AYMé-PERROT D, WALTER S, GABELICA Z,et al. Evaluation of carbon cryogels used as cathodes for non-flowing zinc-bromine storage cells [J]. Journal of Power Sources,2008,175(1):644-650.
[47] MUNAIAH Y,SURESH S,DHEENADAYALAN S,et al. Comparative electrocatalytic performance of single-walled and multiwalled carbon nanotubes for zinc bromine redox flow batteries [J]. The Journal of Physical Chemistry C,2014,118(27):14795-14804.
[48] WU M C, ZHAO T S, ZHANG R H, et al. A zinc-bromine flow battery with improved design of cell structure and electrodes [J]. Energy Technology,2018,6(2):333-339.
[49] ARCHANA K S,PANDIYAN NARESH R,ENALE H,et al. Effect of positive electrode modification on the performance of zinc-bromine redox flow batteries [J]. Journal of Energy Storage,2020,29:101462.
[50] XIANG H X,TAN A D,PIAO J H,et al. Efficient nitrogen-doped carbon for zinc-bromine flow battery [J]. Small,2019,15(24):1901848.
[51] LU W J,XU P C,SHAO S Y,et al. Multifunctional carbon felt electrode with N-rich defects enables a long-cycle zinc-bromine flow battery with ultrahigh power density [J]. Advanced Functional Materials,2021,31(30):2102913.
[52] WU W L,XU S C,LIN Z R,et al. A polybromide confiner with selective bromide conduction for high performance aqueous zinc-bromine batteries [J]. Energy Storage Materials,2022,49:11-18.
[53] YIN Y B,YUAN Z Z,LI X F. Rechargeable aqueous zinc-bromine battery:an overview and future perspective [J]. Physical Chemistry Chemical Physics,2021,23(46):26070-26084.
[54] LEE J N,DO E,KIM Y,et al. Development of titanium 3D mesh interlayer for enhancing the electrochemical performance of zinc-bromine flow battery [J]. Scientific Reports,2021,11:4508.
[55] ZHANG Y,WEI C L,WU M X,et al. A high-performance COF-based aqueous zinc-bromine battery [J]. Chemical Engineering Journal,2023,451:138915.
[56] LI G,JIA Y B,ZHANG S,et al. The crossover behavior of bromine species in the metal-free flow battery [J]. Journal of Applied Electrochemistry,2017,47(2):261-272.
[57] YUAN Z Z,YIN Y B,XIE C X,et al. Advanced materials for zinc-based flow battery:development and challenge [J]. Advanced Materials,2019,31(50):1902025.
[58] LI M Q,SU H,QIU Q G,et al. A quaternized polysulfone membrane for zinc-bromine redox flow battery [J]. Journal of Chemistry,2014:321629.
[59] ZHANG L Q,ZHANG H M,LAI Q Z,et al. Development of carbon coated membrane for zinc/bromine flow battery with high power density [J]. Journal of Power Sources,2013,227:41-47.
[60] KIM R,KIM H G,DOO G,et al. Ultrathin Nafion-filled porous membrane for zinc/bromine redox flow batteries [J]. Scientific Reports,2017,7:10503.
[61] KIM R,YUK S,LEE J H,et al. Scaling the water cluster size of Nafion membranes for a high-performance Zn/Br redox flow battery [J]. Journal of Membrane Science,2018,564:852-858.
[62] YUAN X H,MO J,HUANG J,et al. An aqueous hybrid zinc-bromine battery with high voltage and energy density [J]. ChemElectroChem,2020,7(7):1531-1536.
[63] NARESH R P,RAGUPATHY P,ULAGANATHAN M. Carbon nanotube scaffolds entrapped in a gel matrix for realizing the improved cycle life of zinc bromine redox flow batteries [J]. ACS Applied Materials & Interfaces,2021,13(40):48110-48118.
[64] HUA L,LU W,LI T,et al. A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery [J]. Materials Today Energy,2021,21:100763.
[65] HAN D B, GIKUNOO E K, SHANMUGAM S. A zwitterionic composite membrane for a high-performance zinc/bromine flowless battery [J]. Journal of Materials Chemistry A,2022,10(36):18598-18601.
[66] HAN D B, SHANMUGAM S. Active material crossover suppression with bi-ionic transportability by an amphoteric membrane for zinc-bromine redox flow battery [J]. Journal of Power Sources,2022,540:231637.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-04-06
基金项目:湖北省自然科学基金(2021CFB598)
作者简介:邓淏天,硕士研究生。Email:dht7210@163.com
*通信作者:王学华,博士,教授。Email:wxuehua2022@163.com
引文格式:邓淏天,王学华,石胜伟,等. 锌溴电池电解液及电极材料研究进展[J]. 武汉工程大学学报,2024,46(1):27-37.
更新日期/Last Update: 2024-03-01