|本期目录/Table of Contents|

[1]冯继宝,朱晓东,高建宏*,等.基于三嗪缺电子单元宽带隙聚合物给体材料的合成及光伏性能[J].武汉工程大学学报,2024,46(02):148-154.[doi:10.19843/j.cnki.CN42-1779/TQ.202301004]
 FENG Jibao,ZHU Xiaodong,GAO Jianhong*,et al.Synthesis and photovoltaic performance of wide-bandgappolymer donor with triazine-based electron-deficient unit[J].Journal of Wuhan Institute of Technology,2024,46(02):148-154.[doi:10.19843/j.cnki.CN42-1779/TQ.202301004]
点击复制

基于三嗪缺电子单元宽带隙聚合物给体材料的
合成及光伏性能
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年02期
页码:
148-154
栏目:
材料科学与工程
出版日期:
2024-04-28

文章信息/Info

Title:
Synthesis and photovoltaic performance of wide-bandgap
polymer donor with triazine-based electron-deficient unit
文章编号:
1674 - 2869(2024)02 - 0148 - 07
作者:
冯继宝朱晓东高建宏*刘治田
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
FENG JibaoZHU XiaodongGAO Jianhong*LIU Zhitian
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
聚合物太阳能电池光伏性能聚合物给体材料三嗪缺电子单元
Keywords:
polymer solar cell photovoltaic performance polymer donor material triazine-based electron-deficient unit

分类号:
D430.50
DOI:
10.19843/j.cnki.CN42-1779/TQ.202301004
文献标志码:
A
摘要:
降低有机光伏材料成本是实现有机太阳能电池工业化生产迫切需要解决的问题。本研究设计合成了一种结构简单、合成成本低的三嗪基缺电子单元(BTTz),与易于获得的3,3′-二氟联噻吩(DFT)给电子单元共聚,开发了一种新型宽带隙聚合物给体材料聚[(2,6-(3,3′-二氟)二噻吩)-alt-(2,4-双(4-(2-丁基辛基)噻吩-2-基)-6-甲氧基-1,3,5-三嗪)](PDFBTTz)。通过热重分析、紫外-可见吸收光谱法和循环伏安法对其特性进行表征,聚合物PDFBTTz展现出适当的吸收范围(350~600 nm),宽的光学带隙(2.06 eV),以及合适的最高占据分子轨道能级(-5.49 eV)。基于聚合物PDFBTTz优异的光物理性质,选取具有能级匹配和吸收光谱互补的IT-4F作为受体材料,制备的有机太阳能电池器件能量转化效率为3.49%,其开路电压为0.75 V,短路电流密度为10.89 mA·cm-2,填充因子为43.36%。上述结果表明BTTz是构筑宽带隙聚合物的有效缺电子单元,同时对该单元进行合理的结构裁剪有望获得更高效的聚合物给体材料。

Abstract:
Reducing the costs of photovoltaic material of organic solar cells is an urgent problem to be solved for their industrial production. Here we synthesized a triazine-based electron-deficient building block (BTTz) with a simple structure and low synthetic costs,and then developed a novel wide-bandgap polymer donor poly 2,6-(3,3′-difluoro) bithiophene-alt-2,4-bis(4-(2-butyloctyl)thiophen-2-yl)-6-methoxy-1,3,5-triazine (PDFBTTz) by combining with easily available 3,3’-difluoro-2,2’-bithiophene(DFT). It was characterized by thermogravimetric analysis, ultraviolet-visible absorption spectroscopy and cyclic voltammetry,etc. Results showed that the PDFBTTz exhibits an absorption range of 350-600 nm with a wide bandgap about 2.06 eV and a suitable highest occupied molecular orbit energy level(-5.49 eV),which are complementary with those of small-molecule electron acceptor IT-4F. As a result,the PDFBTTz-based polymer solar cell shows a modest power conversion efficiency of 3.49% with open-circuit voltage of 0.75 V,a short-circuit current density of 10.89 mA·cm-2,and a filling factor of 43.36%. These results indicate that the BTTz is a promising building block to construct wide-bandgap polymers,and further adjustment of molecular structure is expected to generate more efficient polymer donor materials.

参考文献/References:

[1] FUKUDA K,YU K,SOMEYA T,et al. The future of flexible organic solar cells [J]. Advanced Energy Materials,2020,10(25):2000765.

[2] COLSMANN A, R?HM H, SPRAU C. Shining light on organic solar cells [J]. Solar RRL,2020,4(6):2000015.
[3] DUAN L P, UDDIN A. Progress in stability of organic solar cells [J]. Advance Science,2020,7(11):1903259.
[4] YAO H F, HOU J H. Recent advances in single-junction organic solar cells [J]. Angewandte Chemie(International Edition),2022,61(37):e202209021.
[5] KARKI A,VOLLBRECHT J, DIXON A L, et al. Understanding the high performance of over 15% efficiency in single-junction bulk heterojunction organic solarcells [J]. Advanced Materials,2019,31(48):1903868.
[6] CUI Y,XU Y,YAO H F,et al. Single-junction organic photovoltaic cell with 19% efficiency [J]. Advanced Materials,2021,33(41):2102420.
[7] CHONG K N, XU X P, MENG H F, et al. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination [J]. Advanced Materials,2022,34(13):2109516.
[8] ZHU L, ZHANG M, XU J Q, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology [J]. Nature Materials,2022,21(6):656-663.
[9] SUN R, WU Y, YANG X R, et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor [J]. Advanced Materials,2022,34(26):2110147.
[10] ZHANG S Q,QIN Y P, ZHU J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor [J]. Advanced Materials,2018,30(20):1800868.
[11] ZHANG M J,GUO X,MA W,et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance [J]. Advanced Materials,2015,27(31):4655-4660.
[12] WANG Z, PENG Z X, XIAO Z,et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells [J]. Advanced Materials,2020,32(49):2005386.
[13] BIN H J, ZHONG L, YANG Y K, et al. Medium bandgap polymer donor based on bi(trialkylsilylthienyl- benzo[1,2-b:4,5-b′]-difuran) for high performance nonfullerene polymer solar cells [J]. Advanced Energy Materials,2017,7(20):1700746.
[14] QIAN D P,YE L, ZHANG M J, et al. Design,application,and morphology study of a new photovoltaic polymer with strong aggregation in solution state [J]. Macromolecules,2012,45(24):9611-9617.
[15] LIANG R Z,WANG K,WOLF J,et al. Benzo[1,2-b:4,5-b′]dithiophene-6,7-difluoroquinoxaline small molecule donors with >8% BHJ solar cell efficiency [J]. Advanced Energy Materials,2017,7(20):1602804.
[16] WANG H, CHAO P J,CHEN H,et al. Enhancement of all-polymer solar cells by addition of a chlorinated polymer and formation of an energy cascade in a nonhalogenated solvent [J]. ACS Applied Materials & Interfaces,2021,13(49):58754-58762.
[17] BIN H J, GAO L, ZHANG Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J]. Nature Communications,2016,7:13651.
[18] SUN J X, FENG J, ZHAO H B, et al. Enhanced charge transfer,transport and photovoltaic efficiency in all-polymer organic solar cells by polymer backbone fluorination [J]. Chinese Journal of Chemistry,2018,36(4):280-286.
[19] 刘紫凤,李俊闹,孙逢博,等. 基于非稠环核心的小分子受体材料的合成与光伏应用[J]. 武汉工程大学学报,2022,44(5):516-521.
[20] SHANG A, LUO S W, ZHANG J H,et al. Over 18% binary organic solar cells enabled by isomerization of non-fullerene acceptors with alkylthiophene side chains [J]. Science China Chemistry,2022,65(9):1758-1766.
[21] ZHANG X, QING L Q, YU J W, et al. High-performance noncovalently fused-ring electron acceptors for organic solar cells enabled by noncovalent intramolecular interactions and end-group engineering [J]. Angewandte Chemie (International Edition),2021,60(22):12475-12481.
[22] ZHANG G B, YU H, SUN M X, et al. Diaza-substituted conjugated polymers based on naphthalene diimide for n-type field-effect transistors [J]. Dyes and Pigments,2021,194:109660.
[23] ZHANG G B,YU H,SUN Y,et al. Aza-substitution on naphthalene diimide-based conjugated polymers for n-type bottom gate/top contact polymer transistors under ambient conditions [J]. Journal of Materials Chemistry C,2021,9(2):633-639.
[24] PENG L N,YU Y F, LU J, et al. Development of s-tetrazine-based polymers for efficient polymer solar cells by controlling appropriate molecular aggregation [J]. Dyes and Pigments,2019,171:107717.
[25] YANG L,GU W X,YANG Y F,et al. A highly planar nonfullerene acceptor with multiple noncovalent conformational locks for efficient organic solar cells [J]. Small Methods,2018,2(5):1700330.
[26] CHENG W D, WU Z H, WEN S P,et al. Donor-acceptor copolymers incorporating polybenzo[1,2-b:4, 5-b′]dithiophene and tetrazine for high open circuit voltage polymer solar cells [J]. Organic Electronics,2013,14(9):2124-2131.
[27] XU X P,FENG K,BI Z Z,et al. Single-junction polymer solar cells with 16.35% efficiency enabled by a platinum(II) complexation strategy [J]. Advanced Materials,2019,31(29):1901872.
[28] WU J N, FAN Q P,XIONG M H,et al. Carboxylate substituted pyrazine:a simple and low-cost building block for novel wide bandgap polymer donor enables 15.3% efficiency in organic solar cells [J]. Nano Energy,2021,82:105679.
[29] DUAN Y W, XU X P, YAN H, et al. Pronounced effects of a triazine core on photovoltaic performance-efficient organic solar cells enabled by a PDI trimer-based small molecular acceptor [J]. Advanced Materials,2017,29(7):1605115.
[30] KOH C W, CHO H W, RASHID M A M, et al. 2D star-shaped non-fullerene electron acceptors with modulation of J-/H-type aggregations:molecular design-morphology-electrical property correlation [J]. Advanced Materials Technologies,2020,5(6):2000174.
[31] ZHOU J Y,ZUO Y, WAN X J, et al. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit [J]. Journal of the American Chemical Society,2013,135(23):8484-8487.
[32] YUAN X Y, ZHAO Y L, XIE D S, et al. Polythiophenes for organic solar cells with efficiency surpassing 17% [J]. Joule,2022,6(3):647-661.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-01-09
基金项目:国家自然科学基金(52003209)
作者简介:冯继宝,硕士研究生。Email:18829897055 @163.com
*通信作者:高建宏,博士,副教授。Email:gaojianhong26 @wit.edu.cn
引文格式:冯继宝,朱晓东,高建宏,等. 基于三嗪缺电子单元宽带隙聚合物给体材料的合成及光伏性能[J]. 武汉工程大学学报,2024,46(2):148-154,
更新日期/Last Update: 2024-05-01