|本期目录/Table of Contents|

[1]李金枝,薛建涛*,冯雪晴,等.赤壁市茶园土壤多环芳烃季节分布的特征分析[J].武汉工程大学学报,2024,46(02):175-183.[doi:10.19843/j.cnki.CN42-1779/TQ.202304011]
 LI Jinzhi,XUE Jiantao*,FENG Xueqing,et al.Seasonal distribution of polycyclic aromatic hydrocarbons in the soil oftea plantations in Chibi County[J].Journal of Wuhan Institute of Technology,2024,46(02):175-183.[doi:10.19843/j.cnki.CN42-1779/TQ.202304011]
点击复制

赤壁市茶园土壤多环芳烃季节分布的特征分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年02期
页码:
175-183
栏目:
生物与环境工程
出版日期:
2024-04-28

文章信息/Info

Title:
Seasonal distribution of polycyclic aromatic hydrocarbons in the soil of
tea plantations in Chibi County
文章编号:
1674 - 2869(2024)02 - 0175 - 09
作者:
李金枝 薛建涛* 冯雪晴 冯俊俊 张雪莹
武汉工程大学绿色化工过程教育部重点实验室,环境生态与生物工程学院,湖北 武汉 430205
Author(s):
LI Jinzhi XUE Jiantao* FENG Xueqing FENG Junjun ZHANG Xueying
Key Laboratory of Green Chemical Process, Ministry of Education, School of Environmental Ecology and Bioengineering,
Wuhan Institute of Technology, Wuhan 430205, China
关键词:
多环芳烃茶园土壤季节差异源解析风险评价
Keywords:
polycyclic aromatic hydrocarbons (PAHs) tea plantation soil seasonal variation source resolution risk assessment
分类号:
X131.3
DOI:
10.19843/j.cnki.CN42-1779/TQ.202304011
文献标志码:
A
摘要:
土壤是持久性有机污染物多环芳烃(PAHs)的主要归趋之一,城市、农业、工业等土壤中PAHs浓度水平、污染来源及风险评估等研究得到了广泛的关注。采用气相色谱质谱联用法对赤壁市太平口村茶园土壤PAHs的分布、来源及生态风险评价进行了季节差异分析。结果表明:茶园土壤中16种PAHs的总浓度为18.38~154.44 ng·g-1,平均值71.33 ng·g-1;夏季土壤中PAHs浓度略高于冬季。整体上茶园土壤中PAHs是以5~6环组成为主,但在冬季有25%样点是以2~3环为主。通过源解析发现,赤壁市茶园土壤PAHs主要来自石油燃烧,木材及煤炭燃烧等混合燃烧源。其中冬季土壤PAHs还存在石油输入源。茶园土壤中总有机碳(TOC)与总PAHs存在显著的相关性(r2=0.46,p ≤ 0.05),其中与高环PAHs之间存在显著相关性(r2=0.5,p ≤ 0.01),与低环PAHs不存在相关性(r2=0.13,p ≥ 0.05)。生态风险评价结果表示,尽管赤壁市茶园土壤PAHs整体生态风险相对较低,但也存在一定致癌风险,其中以苯并(b)荧蒽(BbF)、二苯并(a,h)蒽(DahA)和茚并(1,2,3-cd)芘(InP)的毒性当量浓度贡献最大。

Abstract:
Soil is one of the main places for accumulation of persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). PAHs concentration, sources and risk assessment in urban, agricultural and industrial soils have received extensive attention. Seasonal differences in the distribution, sources, and ecological risk assessment of PAHs in the soil of the tea plantations in Taipingkou Village, Chibi County were analyzed using gas chromatography-mass spectrometry. The findings showed that the total concentration of 16 PAHs in the soil of tea plantations was in the range of 18.38~154.44 ng·g-1, with an average of 71.33 ng·g-1; the PAH concentration was slightly higher in summer than in winter. Overall, five or six ring PAHs were predominant in tea plantation soil, but in winter, 25% of sampling points were dominated by 2-3 ring PAHs. Source analysis revealed that PAHs in the tea plantation soil in Chibi County mainly came from petroleum combustion, mixed combustion sources such as wood and coal. Additionally, in winter, there was also a petroleum input source for PAHs in the soil. There was a significant correlation between total organic carbon (TOC) and total PAHs in the tea plantation soil (r2=0.46, p ≤ 0.05), with a significant correlation between high-ring PAHs (r2=0.5, p ≤ 0.01), and no correlation with low-ring PAHs (r2=0.13, p ≥ 0.05). The ecological risk assessment results indicate that although the overall ecological risk of PAHs in the soil of tea plantations in Chibi County is relatively low, there is still a certain carcinogenic risk, with benzo(b)fluoranthene (BbF), dibenzo(a,h)anthracene (DahA), and indeno(1,2,3-cd)pyrene (InP) contributing the most to the toxicity-equivalence concentrations.

参考文献/References:

[1] REZAEI K R, JAAFARZADEH N, REZVANI G M, et al. Cancer risk assessment of polycyclic aromatic hydrocarbons in the soil and sediments of Iran: a systematic review study[J]. Reviews on Environmental Health, 2021, 37(4): 597-612.

[2] 曹斐姝, 陈婷婷, 梁家宇, 等. 石化场地污染土壤生物修复技术研究[J]. 化学与生物工程, 2022, 39(11): 47-54.
[3] 冯清敏, 王子豪, 唐家璇, 等. 一株芘好氧降解菌的筛选鉴定及共代谢特性研究[J]. 化学与生物工程, 2021, 38(6): 44-50, 67.
[4] RAVINDRA K, SOKHI R, VAN GRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation[J]. Atmospheric Environment, 2008, 42(13):2895-2921.
[5] ZHANG T, LIU F, YU X Z, et al. Risk assessment and ecotoxicological diagnosis of soil from a chemical industry park in Nanjing, China[J]. Ecotoxicology, 2021, 30(7): 1303-1314.
[6] LARSEN R K, BAKER J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods[J]. Environmental Science and Technology, 2003, 37(9): 1873-1881.
[7] WILD S R, JONES K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget[J]. Environmental Pollution, 1995, 88(1): 91-108.
[8] MUELLER K E, SHANN J R. PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees[J]. Chemosphere, 2006, 64(6): 1006-1014.
[9] ZHANG H, WANG J F, BAO H Y, et al. Polycyclic aromatic hydrocarbons in urban soils of Zhengzhou city, China: occurrence, source and human health evaluation[J]. Bulletin of Environmental Contamina-tion and Toxicology, 2020,105(3):446-452.
[10] YANG B, XUE N D, ZHOU L L, et al. Risk assessment and sources of polycyclic aromatic hydrocarbons in agricultural soils of Huanghuai plain, China[J]. Ecotoxicology and Environmental Safety, 2012, 84: 304-310.
[11] HAN B, LI Q, LIU A, et al. Polycyclic aromatic hydrocarbon (PAH) distribution in surface sediments from Yazhou Bay of Sanya, South China, and their source and risk assessment[J]. Marine Pollution Bulletin, 2021, 162: 111800.
[12] 林道辉. 茶叶中多环芳烃的浓度水平、源解析及风险[D]. 杭州: 浙江大学, 2005.
[13] 环境保护部. 土壤和沉积物 多环芳烃的测定 气相色谱—质谱法 HJ 805—2016[S]. 北京: 中国环境科学出版社, 2016: 9.
[14] LIANG M, LIANG H D, RAO Z, et al. Characterization of polycyclic aromatic hydrocarbons in urban-rural integration area soil, North China: spatial distribution, sources and potential human health risk assessment[J]. Chemosphere, 2019, 234: 875-884.
[15] TONG R P, YANG X Y, SU H R, et al. Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai[J]. Science of The Total Environment, 2018, 616/617: 1365-1373.
[16] 王泽亚, 张家泉, 柳山. 鄂东某白茶园土壤特征分析和安全性评价[J]. 化学试剂, 2021, 43(2): 204-209.
[17] 倪沁颜, 杨冬雪, 孔德贤, 等. 福建省茶园土壤中多环芳烃的分布、来源分析及生态风险评价[J]. 中国环境监测, 2009, 25(6): 90-93.
[18] HAN F L, GUO H, HU J L, et al. Sources and health risks of ambient polycyclic aromatic hydrocarbons in China[J]. Science of The Total Environment, 2020, 698: 134229.
[19] LI Y F, BAI X R, REN Y Q, et al. PAHs and nitro-PAHs in urban Beijing from 2017 to 2018: characteristics, sources, transformation mechanism and risk assessment[J]. Journal of Hazardous Materials, 2022, 436: 129143.
[20] ZHANG Y, ZHENG H, ZHANG L, et al. Fine particle-bound polycyclic aromatic hydrocarbons (PAHs) at an urban site of Wuhan, central China: characteristics, potential sources and cancer risks apportionment[J]. Environmental Pollution, 2019, 246: 319-327.
[21] DUMANOGLU Y, GAGA E O, GUNGORMUS E, et al. Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants[J]. Science of The Total Environment, 2017, 580: 920-935.
[22] ZHANG H B, LUO Y M, WONG M H, et al. Distributions and concentrations of PAHs in Hong Kong soils[J]. Environmental Pollution, 2006, 141(1): 107-114.
[23] SWIT P, ORZEL J, MASLANKA S. Investigation of the origin and concentration of polycyclic aromatic hydrocarbon with improved accuracy by the use of a multi-component integrated calibration method in the Katowice region, Poland[J]. Journal of Hazardous Materials, 2023, 448: 130871.
[24] YUNKER M B,MACDONALD R W,VINGARZAN R. PAHs in the Fraser River basin a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33: 489-515.
[25] 孙岳宏, 王语嫣, 刘冲, 等. 长江中游赤壁段农业用地多环芳烃来源解析[J]. 环境科学与技术, 2021, 44(4): 104-111.
[26] XU J L, WANG H X, SHENG L X, et al. Distribution characteristics and risk assessment of polycyclic aromatic hydrocarbons in the Momoge Wetland, China[J]. International Journal of Environmental Research and Public Health, 2017, 14(1): 85.
[27] SOFOWOTE U M, MCCARRY B E, MARVIN C H. Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods[J]. Environmental Science and Technology, 2008, 42(16): 6007-6014.
[28] SIMCIK M F, EISENREICH S J, LIOY P J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan[J]. Atmospheric Environment, 1999, 33(30): 5071-5079.
[29] KHALILI N R, SCHEFF P A, HOLSEN T M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions[J]. Atmospheric Environment, 1995, 29(4): 533-542.
[30] RIBEIRO J, SILVA T, MENDONCA FILHO J G, et al. Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles[J]. Journal of Hazardous Materials, 2012, 199: 105-110.
[31] WANG J C, ZHAO Y S, SUN J C, et al. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China[J]. Frontiers of Earth Science, 2018, 13(1): 33-42.
[32] WANG W T, MASSEY SIMONICH S L, XUE M, et al. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China[J]. Environmental Pollution,2010,158(5):1245-1251.
[33] DUAN Y H, SHEN G F, TAO S, et al. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi,China[J]. Chemosphere,2015,127:64-69.
[34] AGARWAL T, KHILLARE P S, SHRIDHAR V, et al. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India[J]. Journal of Hazardous Materials, 2009, 163(2/3): 1033-1039.
[35] MALISZEWSKA-KORDYBACH B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 1996, 11(1/2): 121-127.
[36] FENG J L, LI X Y, ZHAO J H, et al. Distribution, transfer, and health risks of polycyclic aromatic hydrocarbons (PAHs) in soil-wheat systems of Henan Province, a typical agriculture province of China[J]. Environmental Science and Pollution Research, 2017, 24(22): 18195-18203.
[37] LIU G, NIU J J, GUO W J, et al. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China[J]. Chemosphere, 2016, 163: 461-470.
[38] MOSTERT M M R, AYOKO G A, KOKOT S. Application of chemometrics to analysis of soil pollutants[J]. Trac-Trends in Analytical Chemistry, 2010, 29(5): 430-445.
[39] ANNOKKéE G J. MT-TNO Research into the biodegradation of soils and sediments contaminated with oils and polycyclic aromatic hydrocarbons (PAHs)[J].Contaminated Soil, 1990, 90: 941-945.
[40] 廖婷,邢新丽,石明明,等. 神农架大九湖PAHs多介质归趋模拟[J]. 地质科技通报, 2020,39(5):148-155.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-04-07
基金项目:国家自然科学基金(41903066);流域关键带演化湖北省重点实验室开放基金(CZE2022F05);武汉工程大学研究生教育创新基金(X19G028;CX2021447)
作者简介:李金枝,硕士研究生。Email:1206871446@qq.com
*通信作者:薛建涛,博士,讲师。Email:xuejiantaocug@163.com
引文格式:李金枝,薛建涛,冯雪晴,等. 赤壁市茶园土壤多环芳烃季节分布的特征分析[J]. 武汉工程大学学报,2024,46(2):175-183.



更新日期/Last Update: 2024-05-01