|本期目录/Table of Contents|

[1]许 哲,吴巧云*.兼顾降噪和通风性能的声学超材料研究进展[J].武汉工程大学学报,2024,46(02):209-216.[doi:10.19843/j.cnki.CN42-1779/TQ.202305005]
 XU Zhe,WU Qiaoyun*.Research advances in acoustic metamaterials balancing noise reduction and ventilation performance[J].Journal of Wuhan Institute of Technology,2024,46(02):209-216.[doi:10.19843/j.cnki.CN42-1779/TQ.202305005]
点击复制

兼顾降噪和通风性能的声学超材料研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年02期
页码:
209-216
栏目:
资源与土木工程
出版日期:
2024-04-28

文章信息/Info

Title:
Research advances in acoustic metamaterials balancing noise reduction and ventilation performance
文章编号:
1674 - 2869(2024)02 - 0209 - 08
作者:
许 哲吴巧云*
武汉工程大学土木工程与建筑学院,湖北 武汉 430074
Author(s):
XU Zhe WU Qiaoyun*
School of Civil Engineering and Architecture,Wuhan Institute of Technology,Wuhan 430074,China
关键词:
声学超材料降噪通风特性低频宽带
Keywords:
acoustic metamaterial noise reduction ventilation performance low frequency broadband
分类号:
TU112
DOI:
10.19843/j.cnki.CN42-1779/TQ.202305005
文献标志码:
A
摘要:
传统用于隔声降噪的结构,通常阻碍了气流的传输,无法满足许多实际应用场景的需求。声学超材料作为当下声学研究的热点,为设计新颖的通风降噪结构提供了有效的解决方案。简要讨论了传统通风降噪结构在应用中的局限性,追溯了声学超材料的出现与发展,重点介绍了Helmholtz共振结构、空间盘绕结构、声学超笼和声传输可调结构这几种类型的声学超材料在通风和降噪方面应用的最新进展,总结了这些超材料的结构特点、降噪原理和通风特性,以及它们在低频宽带噪声衰减、通风效果和结构轻薄化等方面的明显优势。最后,对这一新兴领域在优化设计、现场实验和通风性能研究三个方面的发展进行了展望。

Abstract:
Some traditional structures of sound insulation or noise reduction hinder the transmission of airflow, failing to meet the needs of certain application scenarios. Acoustic metamaterials, the focus of current acoustic research, provide an effective solution for the design of novel ventilation and noise-reduction structures. This paper briefly discusses the limitations of traditional ventilation and noise-reduction structures in application, traces the emergence and development of acoustic metamaterials, and focuses on the latest progress in the application of several types of acoustic metamaterials in ventilation and noise reduction, such as Helmholtz resonance structure, space coiling structure, acoustic metacage and acoustic transmission adjustable structure. The structural characteristics, noise-reduction principles and ventilation characteristics of these metamaterials are summarized, and their obvious advantages in low-frequency broadband noise attenuation, ventilation effect and lightweight structure are presented. Finally, the development of this new field in three aspects, i.e. optimization design, field experiment and ventilation performance research, is proposed.

参考文献/References:

[1] YUYA N, SOHEI N, TSUYOSHI N, et al. Sound propagation in soundproofing casement windows[J]. Applied Acoustics, 2009, 70(9):1160-1167.

[2] 王俪静, 吴晓莉. 声学超材料在绿色建筑通风隔声中的应用展望[J].林业机械与木工设备, 2022, 50(10):13-21.
[3] 牛亚文, 赵才友, 易强, 等. 可实现宽频隔声的全向通风铁路声屏障[J].浙江大学学报(工学版), 2021, 55(6):1048-1055.
[4] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics-Uspekhi, 1968, 10(4):509-514.
[5] LIU Z,ZHANG X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289:1734-1736.
[6] FOKIN V, AMBATI M, SUN C, et al. Method for retrieving effective properties of locally resonant acoustic metamaterials[J]. Physical Review B, 2007, 76(14):144302.
[7] LI Y, LIANG B, TAO X, et al. Acoustic focusing by coiling up space[J]. Applied Physics Letters, 2012, 101(23):233508.
[8] CAI X B, GUO Q Q, HU G K, et al. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators[J]. Applied Physics Letters, 2014, 105(12):121901.
[9] YANG Z J, GAO F, SHI X H, et al. Topological acoustics[J]. Physical Review Letters,2015, 114(11):114301.
[10] SONG Y G, CHENG Q, HUANG B, et al. Broadband fractal acoustic metamaterials for low-frequency sound attenuation[J]. Applied Physics Letters, 2016, 109(13):131901.
[11] LIU J, LI L P, XIA B Z, et al. Fractal labyrinthine acoustic metamaterial in planar lattices[J]. International Journal of Solids and Structures, 2018, 132/133:20-30.
[12] MAN X F, LUO Z, LIU J, et al. Hilbert fractal acoustic metamaterials with negative mass density and bulk modulus on subwavelength scale[J]. Materials & Design, 2019, 180:107911.
[13] MAN X F, XIA B Z, LUO Z, et al. 3D Hilbert fractal acoustic metamaterials: low-frequency and multi-band sound insulation[J]. Journal of Physics D: Applied Physics, 2019, 52(19):195302.
[14] ZHAO X Z, LIU G Q, XIA D. Maze-like acoustic metamaterial for low-frequency broadband noise suppression[J]. Applied Physics Express, 2020, 13(2):27002.
[15] ZHU X F, LI K, ZHANG P, et al. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials[J]. Nature Communications, 2016, 7(1):11731.
[16] ESFAHLANI H,LISSEK H, MOSIG J R. Generation of acoustic helical wavefronts using metasurfaces[J]. Physical Review B, 2017, 95(2):024312.
[17] LI Y, JIANG X ,LI R Q, et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces[J]. Physical Review Applied, 2014, 2(6):064002.
[18] ZHONG J, ZHAO H G, YANG H B, et al. Theoretical requirements and inverse design for broadband perfect absorption of low-frequency waterborne sound by ultrathin metasurface[J]. Scientific Reports, 2019, 9:1181.
[19] KUMAR S, LEE H P. The present and future role of acoustic metamaterials for architectural and urban noise mitigations[J]. Acoustics, 2019, 1(3):590-607.
[20] FORD R D, KERRY G. The sound insulation of partially open double glazing[J]. Applied Acoustics, 1973, 6(1):57-72.
[21] KERRY G, FORD R D. The field performance of partially open dual glazing[J]. Applied Acoustics, 1974, 7(3):213-227.
[22] KANG J,BROCKLESBY M W. Feasibility of applying micro-perforated absorbers in acoustic window systems[J]. Applied Acoustics, 2004, 66(6):669-689.
[23] KANG J, LI Z M. Numerical simulation of an acoustic window system using finite element method[J]. Acta Acustica United Acustica, 2007,93:152-163.
[24] TONG Y G, TANG S K. Plenum window insertion loss in the presence of a line source—a scale model study[J]. Journal of the Acoustical Society of America, 2013, 133:1458-1467.
[25] TONG Y G, TANG S K, KANG J, et al. Full scale field study of sound transmission across plenum windows[J]. Applied Acoustics, 2015, 89:244-253.
[26] MARTELLO N Z, FAUSTI P, SANTONI A, et al. The use of sound absorbing shading systems for the attenuation of noise on building fa?ades. An experimental investigation[J]. Buildings, 2015, 5(4):1346-1360.
[27] 金伟, 蔡俊. 室内变电站散热通风口的新型消声结构研究[J]. 噪声与振动控制, 2010, 30(4):158-160.
[28] 韩珈琪. 高速铁路声屏障结构特性研究及减载式声屏障技术初探[D].成都:西南交通大学, 2014.
[29] 周立群, 韩健, 何宾, 等. V型减载式声屏障降噪特性的试验研究[J].噪声与振动控制, 2018, 38(6):199-204.
[30] KIM S H, LEE S H. Air transparent soundproof window[J]. AIP Advances, 2014, 4(11):117123.
[31] JUNG J W,KIM J E,LEE J W. Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range[J]. Applied Physics Letters, 2018, 112(4):041903.
[32] WANG X L, LUO X D, YANG B, et al. Ultrathin and durable open metamaterials for simultaneous ventilation and sound reduction[J]. Applied Physics Letters, 2019, 115(17):171902.
[33] LEE T, NOMURA T, DEDE M E, et al. Ultrasparse acoustic absorbers enabling fluid flow and visible-light controls[J]. Physical Review Applied, 2019, 11(2):024022.
[34] HE J J, ZHOU Z L, ZHANG C X, et al. Ultrasparse and omnidirectional acoustic ventilated meta-barrier[J]. Applied Physics Letters,2022, 120(19):191701.
[35] ZHANG H L, ZHU Y F, LIANG B, et al. Omnidirectional ventilated acoustic barrier[J]. Applied Physics Letters, 2017, 111(20):203502.
[36] 林远鹏, 梁彬, 杨京, 等. 可实现宽频宽角度隔声的薄层通风结构[J].南京大学学报(自然科学版), 2019, 55(5):791-795.
[37] YANG J, LEE J S, LEE H R, et al. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission[J]. Applied Physics Letters, 2018, 112(9):091901.
[38] GHAFFARIVARDAVAGH R, NIKOLAJCZYK J, ANDERSON S, et al. Ultra-open acoustic metamaterial silencer based on Fano-like interference[J]. Physical Review B, 2019, 99(2):024302.
[39] CHEN A, ZHAO X G, YANG Z W, et al. Broadband labyrinthine acoustic insulator[J]. Physical Review Applied, 2022, 18(6): 064057.
[40] SHEN C, XIE Y, LI J, et al. Acoustic metacages for sound shielding with steady air flow[J]. Journal of Applied Physics, 2018, 123(12):124501.
[41] MELNIKOV A, MAEDER M, FRIEDRICH N, et al. Acoustic metamaterial capsule for reduction of stage machinery noise[J]. The Journal of the Acoustical Society of America, 2020, 147(3):1491-1503.
[42] LIU C K, SHI J J, ZHAO W, et al. Three-dimensional soundproof acoustic metacage[J]. Physical Review Letters, 2021, 127(8):084301.
[43] GE Y, SUN H X, YUAN S Q, et al. Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms[J]. Applied Physics Letters, 2018, 112(24):243502.
[44] GE Y, SUN H X, YUAN S Q, et al. Switchable omnidirectional acoustic insulation through open window structures with ultrathin metasurfaces[J]. Physical Review Materials, 2019, 3(6):065203.
[45] XIAO Z Q, GAO P L, HE X, et al. Multifunctional acoustic metamaterial for air ventilation, broadband sound insulation and switchable transmission[J]. Journal of Physics D: Applied Physics,2022, 56(4):044006.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-05-06
基金项目:国家自然科学基金(52078395)
作者简介:许 哲,硕士研究生。 Email:1453338126@qq.com
*通信作者:吴巧云,博士,教授。 Email:wuqiaoyun@wit.edu.cn
引文格式:许哲,吴巧云. 兼顾降噪和通风性能的声学超材料研究进展[J]. 武汉工程大学学报,2024,46(2):209-216.
更新日期/Last Update: 2024-05-01