|本期目录/Table of Contents|

[1]孙全昌,杨 明,候华毅*.正交偏最小二乘判别法对青蒿素拉曼光谱的研究[J].武汉工程大学学报,2021,43(03):271-276.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012011]
 SUN Quanchang,YANG Ming,HOU Huayi *.Raman Spectra of Artemisinins via Orthogonal Projections to Latent Structures-Discriminant Analysis Modeling[J].Journal of Wuhan Institute of Technology,2021,43(03):271-276.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012011]
点击复制

正交偏最小二乘判别法对青蒿素拉曼光谱的研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年03期
页码:
271-276
栏目:
化学与化学工程
出版日期:
2021-06-30

文章信息/Info

Title:
Raman Spectra of Artemisinins via Orthogonal Projections to Latent Structures-Discriminant Analysis Modeling
文章编号:
1674 - 2869(2021)03 - 0271 - 06
作者:
孙全昌杨 明候华毅*
光学信息与模式识别湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
SUN Quanchang YANG Ming HOU Huayi *
Hubei Key Laboratory of Optical Information and Pattern Recognition(Wuhan Institute of Technology), Wuhan 430205, China
关键词:
青蒿素拉曼光谱正交偏最小二乘法判别分析
Keywords:
artemisinin Raman spectroscopy OPLS-DA
分类号:
O657.37
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202012011
文献标志码:
A
摘要:
为了鉴别不同纯度的青蒿素样品,本文运用正交偏最小二乘法判别分析方法(OPLS-DA)研究了不同纯度青蒿素样品的拉曼光谱。研究表明,对青蒿素拉曼光谱进行OPLS-DA建模分析可以鉴别不同纯度的样品,从而用于青蒿素样品的质量评估。另外,青蒿素拉曼光谱OPLS-DA建模分析表明,青蒿素拉曼光谱中与生物活性官能团相关的724 cm-1处的特征振动模式与青蒿素的纯度紧密相关:在不同纯度青蒿素样品中,该特征振动模式与其他振动模式的相对强度比具有统计学差异(单向方差分析,F=7.39,P<0.01)。
Abstract:
To differentiate the purity of artemisinin samples, this paper uses orthogonal projections to latent structures-discriminant analysis (OPLS-DA) modeling to sudy Raman spectra of artemisinins with different purities. The results showed that OPLS-DA modeling provides a promising tool to differentiate the purity of artemisinin samples, which would be useful for practical application in quality evaluation of artemisinins. Also, the OPLS-DA modeling on Raman spectra showed that the characteristic vibrational mode at 724 cm-1 correlated with the bioactive functional group is very sensitive to purity of artemisinin. In addition, it was demonstrated that the relative intensity ratio of 724 cm-1 to a mode not correlated with the bioactive functional group is statistically different (one-way ANOVA, F=7.39, P<0.01) among different artemisinin samples.

参考文献/References:

[1] WELLS T N C, ALONSO P L, GUTTERIDGE W E. New medicines to improve control and contribute to the eradication of malaria[J]. Nature reviews Drug discovery, 2009, 8(11): 879-891. [2] RAMAN J, MORRIS N, FREAN J, et al. Reviewing South Africa’s malaria elimination strategy (2012-2018): progress, challenges and priorities[J]. Malaria Journal, 2016, 15(1): 1-11. [3] SU X Z, MILLER L H. The discovery of artemisinin and the Nobel Prize in Physiology or Medicine[J]. Science China Life Sciences, 2015, 58: 1175-1179. [4] PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[M], Nature, 2013, 496-528. [5] DONDORP A M, YEUNG S, WHITE L, et al. Artemisinin resistance: current status and scenarios for containment[J]. Nature Reviews Microbiology, 2010, 8(4): 272-280. [6] KAUR H, CLARKE S, LALANI M, et al. Fake anti-malarials: start with the facts [J]. Malaria Journal, 2016, 15(1):1-9. [7] SHIBESHI M A, KIFLE Z D, ATNAFIE S A. Antimalarial drug resistance and novel targets for antimalarial drug discovery[J]. Infection and Drug Resistance, 2020, 13: 4047. [8] NEWTON P N, HANSON K, GOODMAN C. Do anti-malarials in Africa meet quality standards? The market penetration of non quality-assured artemisinin combination therapy in eight African countries[J]. Malaria Journal, 2017, 16(1): 204. [9] PEPLOW M. Synthetic biology’s first malaria drug meets market resistance[J]. Nature News, 2016, 530(7591): 389. [10] YONG Y L, PLAN?ON A, LAU Y H, et al. Collaborative health and enforcement operations on the quality of antimalarials and antibiotics in southeast Asia[J]. The American Journal of Tropical Medicine and Hygiene, 2015,92(Suppl6): 105-112. [11] HAMED K, STRICKER K. Tackling the problems associated with antimalarial medicines of poor quality[J]. IntechOpen, 2016:285-302. [12] LAPKIN A A, WALKER A, SULLIVAN N, et al. Development of HPLC analytical protocols for quantification of artemisinin in biomass and extracts[J]. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49(4): 908-915. [13] HO N T, DESAI D, ZAMAN M H. Rapid and specific drug quality testing assay for artemisinin and its derivatives using a luminescent reaction and novel microfluidic technology[J]. The American Journal of Tropical Medicine and Hygiene, 2015, 92(Suppl6): 24-30. [14] GREEN M D, HOSTETLER D M, NETTEY H, et al. Integration of novel low-cost colorimetric, laser photometric, and visual fluorescent techniques for rapid identification of falsified medicines in resource-poor areas: application to artemether-lumefantrine[J]. The American Journal of Tropical Medicine and Hygiene, 2015, 92(Suppl6): 8-16. [15] MBINZE J K, SACRé P Y, YEMOA A, et al. Development, validation and comparison of NIR and Raman methods for the identification and assay of poor-quality oral quinine drops[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111: 21-27. [16] GELLINI C, MUNIZ-MIRANDA M, PAGLIAI M, et al. Spectroscopic studies on antimalarial artesunate: Raman and surface-enhanced Raman scattering and adsorption geometries of Artesunate on silver nanoparticles[J]. Journal of Molecular Structure, 2021, 1224: 129020. [17] WILSON B K, KAUR H, ALLAN E L, et al. A new handheld device for the detection of falsified medicines: demonstration on falsified artemisinin-based therapies from the field[J]. The American Journal of Tropical Medicine and Hygiene, 2017, 96(5): 1117-1123. [18] 孔梦红,吴杜轩,陈相柏. 拉曼光谱定性和定量检测青蒿素研究[J]. 光谱学与光谱分析,2017,37(3):778-782. [19] HOU H Y, YANG X, MAO Z L, et al. Raman study of impurity influence on active center in artemisinin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 221: 117-206. [20] SILVA A F T, SARRAGU?A M C, RIBEIRO P R, et al. Statistical process control of cocrystallization processes: a comparison between OPLS and PLS[J]. International Journal of Pharmaceutics, 2017, 520(1/2): 29-38. [21] BYLESJ? M, RANTALAINEN M, CLOAREC O, et al. OPLS discriminant analysis: combining the strengths of PLS‐DA and SIMCA classification[J]. Journal of Chemometrics: A Journal of the Chemometrics Society, 2006, 20(8/9/10): 341-351. [22] ECKSTEIN-LUDWIG U, WEBB R J, VAN GOETHEM I D A, et al. Artemisinins target the SERCA of plasmodium falciparum[J]. Nature, 2003, 424(6951): 957-961. [23] O’NEILL P M, BARTON V E, WARD S A. The molecular mechanism of action of artemisinin—the debate continues[J]. Molecules, 2010, 15(3): 1705-1721. [24] EDIKPO N, GHASI S, ELIAS A, et al. Artemisinin and biomolecules: the continuing search for mechanism of action[J]. Molecular and Cellular Pharmacology, 2013, 5(2): 75-89. [25] MORONI L, GELLINI C, MIRANDA M M, et al. Raman and infrared characterization of the vibrational properties of the antimalarial drug artemisinin[J]. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2008, 39(2): 276-283. [26] GU J D, CHEN K X, JIANG H L, et al. A quantum chemistry study of Qinghaosu[J]. Chemical physics letters, 1997, 277(1/2/3): 234-238. [27] GU J, CHEN K, JIANG H, et al. A DFT study of artemisinin and 1, 2, 4-trioxane[J]. Journal of Molecular Structure: THEOCHEM, 1999, 459(1/2/3): 103-111. [28] FANG Y X, ZHU Z Y, HE D J. Confirmation of the vibrational frequency of peroxide group in arteannuin and related-compounds[J]. Acta Chimica Sinica, 1984, 42(12): 1312-1314. [29] KAPETANAKI S, VAROTSIS C. Fourier transfm infrared investigation of non-heme Fe (III) and Fe (II) decomposition of artemisinin and of a simplified trioxane alcohol[J]. Journal of Medicinal Chemistry, 2001, 44(19): 3150-3156. [30] WIKLUND S, JOHANSSON E, SJ?STR?M L, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models[J]. Analytical Chemistry, 2008, 80(1): 115-122. [31] SHAO L T, ZHANG A Y, RONG Z, et al. Fast and non-invasive serum detection technology based on surface-enhanced Raman spectroscopy and multivariate statistical analysis for liver disease[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(2): 451-459.

相似文献/References:

[1]谢鹏,汪建华,王传新,等.射频等离子体制备类金刚石薄膜及其表征[J].武汉工程大学学报,2009,(03):60.
 XIE Peng,WANG Jian hua,WANG Chuan xin,et al.Preparation and characteristics of diamondlike carbon films prepared by RFPECVD[J].Journal of Wuhan Institute of Technology,2009,(03):60.
[2]张孟雄,张铭,吴洪特,等.用含钒催化剂CVD法制备多壁纳米碳管[J].武汉工程大学学报,2009,(12):24.
 Zhang Meng xiong,Zhang Ming,Wu Hong te,et al.Synthesis of multiwall carbon nanotubes by decomposition ofmethane over vanadium container catalysts[J].Journal of Wuhan Institute of Technology,2009,(03):24.
[3]彭 恒,候华毅,陈相柏*.三种不饱和脂肪酸的拉曼光谱及DFT计算快速鉴别方法的研究[J].武汉工程大学学报,2018,40(06):597.[doi:10. 3969/j. issn. 16742869. 2018. 06. 002]
 PENG Heng,HOU Huayi,CHEN Xiangbai*.Differentiation of Three Types of Unsaturated Fatty Acids in Edible Oils by Raman Spectroscopy and DFT Calculation[J].Journal of Wuhan Institute of Technology,2018,40(03):597.[doi:10. 3969/j. issn. 16742869. 2018. 06. 002]

备注/Memo

备注/Memo:
收稿日期:2020-12-09基金项目:湖北省自然科学基金(2020CFB380);湖北省教育厅科学技术研究计划青年人才项目(Q20191506);武汉工程大学科学基金(18QD26)作者简介:孙全昌,硕士研究生。E-mail:2713208464@qq.com*通讯作者:候华毅,博士,讲师。E-mail:hhy@wit.edu.cn引文格式:孙全昌,杨明,候华毅. 正交偏最小二乘判别法对青蒿素拉曼光谱的研究[J]. 武汉工程大学学报,2021,43(3):271-276.
更新日期/Last Update: 2021-06-28