[1] YAN S M, SUN J Q. Assessing China’s salt lake resources R&D based on bibliometrics analysis[J]. Scientometrics, 2015, 105(2):1141-1155.
[2] 马仁锋,梁贤军,庄佩君. 基于文献计量视角的中国船舶工业及其技术研发动态[J]. 世界科技研究与发展,2014(4):446-452.
[3] 李守江. 罗布泊硫酸盐型盐湖钾盐浮选的理论与工艺研究[D]. 武汉:武汉理工大学, 2019.
[4] CHEN W, GENG Y, HONG J L, et al. Life cycle assessment of potash fertilizer production in China[J]. Resources, Conservation and Recycling, 2018, 138: 238-245.
[5] 胡刚, 刘爽, 周宾, 等. 伊朗霍尔木兹海峡沿岸钾盐矿地质特征、成因分析及提取技术[J]. 矿产综合利用, 2024, 45(1): 8-14.
[6] 李长红, 李海民. 盐湖卤水、海水中钾盐的提取方法、研究现状及发展趋势[J]. 盐湖研究, 2010,18(1): 64-69.
[7] 马凯, 马培华, 王礼龙. 世界钾盐生产贸易现状[J]. 现代化工, 2009,29(12): 82-86.
[8] 鲍荣华, 刘树臣, 闫卫东. 世界钾盐资源分配态势及我们的应对策略[J]. 国土资源情报, 2010(8):44-47.
[9] 邹松, 方霖, 沈善强, 等. 国内外典型硫酸盐型盐湖卤水资源现状及提钾工艺综述[J]. 矿产保护与利用, 2017(5): 113-118.
[10] ABU-HAMATTEH Z S H,AL-AMR A M . Carnallite froth flotation optimization and cell efficiency in the Arab potash company, Dead Sea, Jordan[J]. Mineral Processing and Extractive Metallurgy Review, 2008, 29(3):232-257.
[11] AL-ZOUBI A, BRINK U S T. Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics[J]. Marine & Petroleum Geology, 2001,18(7): 779-797.
[12] SHANI J, SHARON R, KOREN R, et al. Effect of Dead-Sea brine and its main salts on cell growth in culture[J]. Pharmacology, 1987, 35(6):339-347.
[13] GAVRIELI I. Massive-scale dissolution, conveyance, and disposal of Dead Sea Potash Industry Halite waste[J]. Environmental Science & Technology, 2023, 57(22):11.
[14] 陈文祥, 张强, 赵小刚, 等. 察尔汗盐湖钾矿资源利用探讨[J]. 盐科学与化工, 2022,51(8): 50-54.
[15] 谭秀民, 张利珍, 张秀峰. 浅析我国盐湖资源的综合利用[J]. 盐业与化工, 2012,41(5): 5-7.
[16] 程芳琴, 成怀刚, 崔香梅. 中国盐湖资源的开发历程及现状[J]. 无机盐工业, 2011,43(7): 1-4.
[17] 乜贞, 卜令忠, 刘建华, 等. 我国盐湖钾盐资源现状及提钾工艺技术进展[J]. 地球学报, 2010,31(6): 869-874.
[18] 毕秋艳, 党力, 曹海莲, 等. 青海盐湖镁资源开发与利用研究进展[J]. 盐湖研究, 2022,30(1):101-109.
[19] LIN S N, ZHANG T G, FU D X, et al. Utilization of magnesium resources in salt lake brine and catalytic degradation of dye wastewater by doping cobalt and nickel[J]. Separation and Purification Technology,2021,270:118808.
[20] 何扬. 美国大盐湖钾盐生产概况[J]. 化工矿物与加工, 2000(7): 29-30.
[21] TRIPP T G. Production of magnesium from Great Salt Lake, Utah USA[J]. Natural Resources and Environmental Issues, 2009, 15(1): 10.
[22] TRAN K T, HAN K S, KIM S J, et al. Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate[J]. Hydrometallurgy, 2016, 160: 106-114.
[23] TRAN K T, VAN L T, AN J W, et al. Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate[J]. Hydrometallurgy, 2013, 138: 93-99.
[24] 刘国建,杨晓东,李鹏业,等.察尔汗盐湖镁资源在新材料、新能源领域的应用与发展[J].世界有色金属,2024(19):226-228.
[25] 阿旦春. 盐湖镁盐制备镁水泥用活性MgO工艺研究[D]. 西宁:中国科学院大学(中国科学院青海盐湖研究所), 2020.
[26] 汪衢. 基于菱镁矿制备不同性能氧化镁及其对水化产品氢氧化镁的影响[D]. 唐山:华北理工大学, 2022.
[27] ZHANG Y, HU Y H, WANG L, et al. Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J]. Minerals Engineering, 2019, 139: 105868.
[28] 姜小萍, 马龙. 探究青海察尔汗盐湖卤水中钙、镁、锂三种元素提取工艺[J]. 安徽化工, 2019,45(5): 60-63.
[29] YAKSIC A, TILTON J E. Using the cumulative availability curve to assess the threat of mineral depletion: the case of lithium[J]. Resources Policy, 2009,34(4): 185-194.
[30] 王万航. 新型杂多酸类共萃剂用于盐湖卤水萃取提锂的应用基础研究[D]. 北京:北京化工大学, 2022.
[31] MARTHI R, SMITH Y R. Selective recovery of lithium from the Great Salt Lake using lithium manganese oxide-diatomaceous earth composite[J]. Hydrometallurgy, 2019,186: 115-125.
[32] LI Y H, ZHAO Z W, LIU X H, et al. Extraction of lithium from salt lake brine by aluminum-based alloys[J]. Transactions of Nonferrous Metals Society of China, 2015,25(10): 3484-3489.
[33] GAO D L,GUO Y,YU X P, et al. Extracting lithium from the high concentration ratio of magnesium and lithium brine using imidazolium-based ionic liquids with varying alkyl chain lengths [J]. Journal of Chemical Engineering of Japan, 2016,49(2): 104-110.
[34] JI Z Y, CHEN Q B, YUAN J S, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J]. Separation and Purification Technology, 2017, 172: 168-177.
[35] LIMJUCO L A, NISOLA G M, LAWAGON C P, et al. H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504: 267-279.
[36] LEMAIRE J, SVECOVA L, LAGALLARDE F, et al. Lithium recovery from aqueous solution by sorption/desorption[J]. Hydrometallurgy, 2014, 143: 1-11.
[37] AN J W, KANG D J, TRAN K T, et al. Recovery of lithium from Uyuni salar brine[J]. Hydrometallurgy, 2012,117/118(1): 64-70.
[38] KARIDAKIS T, AGATZINI-LEONARDOU S, NEOU-SYNGOUNA P. Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material[J]. Hydrometallurgy, 2005,76(1/2): 105-114.
[39] OGAWA Y , KOIBUCHI H , SUTO K ,et al. Effects of the chemical compositions of salars de uyuni and atacama brines on lithium concentration during evaporation[J]. Resource Geology, 2014, 64(2):91-101.
[40] MARCHINI F, RUBI D, dee POZOM, et al. Surface chemistry and lithium-ion exchange in LiMn2O4 for the electrochemical selective extraction of LiCl from natural salt lake brines[J]. The Journal of Physical Chemistry C,2016,120(29):15875-15883.
[41] JONES B F, NAFTZ D L, SPENCER R J, et al. Geochemical evolution of Great Salt Lake, Utah, USA[J]. Aquatic Geochemistry,2009,15(1/2):95-121.
[42] MARTI R, SMITH Y R. Recovery of lithium from brine with MnO2 nanowire ion sieve composite. Rare Metal Technology[C].Berlin:Springer Group, 2018: 209-214.
[43] 熊增华, 王兴富, 王石军, 等. 青海盐湖锂资源综合利用规模探讨[J]. 盐湖研究, 2020,28(4):125-131.
[44] 白燕祥, 王松博, 国爽, 等. 青海柴达木盆地盐湖资源元素利用及研究现状[J]. 盐科学与化工, 2023,52(3): 1-6.
[45] ZTüRK N E, K SE T E. Boron removal from aqueous solutions by ion-exchange resin: batch studies[J]. Desalination, 2008,227(1/2/3):233-240.
[46] JIANG T, ZHANG Q, LIU Y, et al. Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties[J]. Applied Surface Science, 2016,385(11): 88-98.
[47] WANG B, GUO X, BAI P. Removal technology of boron dissolved in aqueous solutions: a review[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014,444: 338-344.
[48] ENVER G, KAYA C, NALAN K, et al. Boron removal from seawater: state-of-the-art review[J]. Desalination: the International Journal on the Science and Technology of Desalting and Water Purification, 2015,356: 85-93.
[49] KYONG-CHOL K, NAM-IL K, TAO J, et al. Boron recovery from salt lake brine,seawater, and wastewater-a review[J]. Hydrometallurgy, 2023 , 218: 106062.
[50] NISHIHAMA S, SUMIYOSHI Y, OOKUBO T, et al. Adsorption of boron using glucamine-based chelate adsorbents[J]. Desalination, 2013, 310: 81-86.
[51] 程怀德, 张全有, 李海民. 卤水资源开发利用技术述评[J]. 盐湖研究, 2003(3): 51-64.
[52] LIN J Y, MAHASTI N N N, HUANG Y H. Recent advances in adsorption and coagulation for boron removal from wastewater: a comprehensive review[J]. Journal of Hazardous Materials, 2021, 407: 124401.
[53] JAMIS P, MUHR H, PLASARI E. Boron removal from waste solutions using a multiophase co-precipitation process[J]. Chemical Engineering Transactions, 2002, 1: 671-676.
[54] IRAWAN C, KUO Y L, LIU J C. Treatment of boron-containing optoelectronic wastewater by precipitation process[J]. Desalination, 2011, 280(1/2/3): 146-151.
[55] TSAI H C, LO S L, KUO J. Using pretreated waste oyster and clam shells and microwave hydrothermal treatment to recover boron from concentrated wastewater[J]. Bioresource Technology, 2011, 102(17): 7802-7806.
[56] 韩井伟. 从提锂后盐湖卤水中萃取提硼的新工艺研究[D]. 西宁:中国科学院研究生院(青海盐湖研究所), 2007.
[57] 施春辉, 王立林, 吕品, 等. 我国硼酸生产现状及发展建议[J]. 当代化工, 2018,47(9): 1948-1951.
[58] 张生宝, 姜维帮, 李顺营. 盐湖卤水提硼技术[J]. 河南化工, 2010,27(20): 20-21.