|本期目录/Table of Contents|

[1]陈 浩,吴 锋*,何秋石,等.双声源驱动热声制冷机特征时间的熵产分析[J].武汉工程大学学报,2016,38(3):283-287.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 016]
 CHEN Hao,WU Feng,HE Qiushi,et al.Entropy Production of Characteristic Time for Thermoacoustic Refrigerator by Double Acoustic Drivers[J].Journal of Wuhan Institute of Technology,2016,38(3):283-287.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 016]
点击复制

双声源驱动热声制冷机特征时间的熵产分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年3期
页码:
283-287
栏目:
机电与信息工程
出版日期:
2016-06-22

文章信息/Info

Title:
Entropy Production of Characteristic Time for Thermoacoustic Refrigerator by Double Acoustic Drivers
作者:
陈 浩吴 锋*何秋石蒋智杰田一泽
武汉工程大学理学院,湖北 武汉 430074
Author(s):
CHEN Hao WU Feng HE Qiushi JANG Zhijie TIAN Yize
School of Science, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
双声源驱动 热声制冷机回热器 特征时间 熵产
Keywords:
dual sound source driver thermoacoustic refrigerator regenerator characteristic time entropy production
分类号:
O302;TK11
DOI:
10. 3969/j. issn. 1674?2869. 2016. 03. 016
文献标志码:
A
摘要:
在有限时间热力学理论的基础上,对双声源驱动热声制冷机的回热器声场进行分析,以特征时间为特征参数来表征热声系统的换能效应,寻求特征时间与回热器熵产之间的最优关系以及其他因素对熵产率的影响. 结果表明:熵产率随着特征时间的减少,到达一个极小点后再平缓增大,通过调节阻抗比,寻求到一个最佳阻抗比值所对应的最小熵产率, 存在一个最优特征时间使得系统的不可逆熵产最小,此时不可逆能量损失最小,有效的提高了双声源驱动热声制冷机效率,有利于双声源驱动系统运行.
Abstract:
The regenerator sound field of thermoacoustic refrigerator driven by dual sound source was analyzed on the basis of the theory of finite time thermodynamics. The characteristic time was used as parameters to characterize the transducer effect of thermoacoustic system, to obtain the optimal relationship between the characteristic time and regenerator entropy production, and explore the influence of other factors on the entropy production rate. The result shows that with the decrease of the characteristic time, the entropy production rate reaches a very small point and then increases again. By adjusting the impedance ratio, the minimum entropy production rate corresponding to a best impedance ratio is sought. The existence of an optimal characteristic time makes the irreversible entropy production of the system minimum. At this point, the irreversible energy loss is minimal, which effectively improves the efficiency of the thermoacoustic refrigerator driven by dual sound source, and is conducive to the system driven by double sound source.

参考文献/References:

[1] 吴锋,李青,郭方中,等. 热声理论的研究进展[J]. 武汉工程大学学报,2012,34(1):1-6. WU F,LI Q,GUO F Z,et al. Advance in thermoacoustic theory [J]. Journal of Wuhan institute technology,2012,34(1):1-6. [2] 鄂青,沈秋婉,陈秋霞. 热声制冷机[J]. 真空与低温,2009,15(33):117-119. E Q,SHEN Q W ,CHEN Q X. Thermoacoustic refrigerator[J]. Vacuum and cryogenics,2009, 15(33):117-119. [3] 吴锋,汪拓,费锦华,等. 热声网络的辛矩阵分析[J]. 热科学与技术,2013,12(4):283-289. WU F, WANG T, FEI J H, et al. Symplectic matrix analysis of thermoacoustic network[J]. Journal of thermal science and technology,2013,12(4):283-289. [4] 李雷,谢秀娟,周立华,等. 双声源法调制回热器边界声场的理论分析[J]. 低温工程,2009,172(6):30-35.LI L, XIE Y J, ZHOU L H, et al. Theoretical analysis for modulating acoustic boundary conditions of a regenerator by double acoustic drivers[J]. Cryogenics,2009,172(6):30-35. [5] 孟繁孔,李志信. 驻型波热声制冷机熵产分析[J]. 工程热物理学报,2006,27(3):508-510. MENG F K, LI Z X. Entropy generation analysis of standing wave thermoacoustic refrigerator[J]. Journal of engineering thermophysics,2006,27(3):508-510. [6] 周立华, 谢秀娟,李雷,等. 双声源驱动热声系统声场调制研究[J]. 工程热物理学报,2012,33(1):27-31. ZHOU L H, XIE Y J, LI L, et al. Study of modulating acoustic field in the thermoacoustic system by double acoustic drivers[J]. Journal of engineering thermophysics,2012,33(1):27-31. [7] 张春萍. 热声核特征参数实验研究及高频微型热声实验装置的研制[D]. 武汉:华中科技大学,2011. [8] 姚寿广. 对流热质传递过程的熵产分析及优化[J]. 华东船舶工业学院学报,1993,7(3):101-107. YAO S G. Analysis and optimization of entropy production in the process of convective heat transfer[J]. Journal of hechinormal college,1993,7(3):101-107. [9] BEJAN A. The thermodynamic design of heat and mass transfer process and devices[J]. Heat and fluid flow,1987,8(4):398-406. [10] BEJAN A. Entropy generation through heat and fluid flow[M]. New york: Wiley,1982. [11] XIE Y J, GAO G, LI Q. Analysis of entropy generation rate inside the stack of standing-wave thermoacoustic refrigerator[J]. Journal of engineering thermophysics,2012,43(9):609-612.本文编辑:陈小平

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-06-23