|本期目录/Table of Contents|

[1]胡帮友,罗圆智*,王桂兰,等.等离子熔积复杂金属零件的数字化制造方法[J].武汉工程大学学报,2016,38(3):268-292.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 017]
 HU Bangyou,LUO Yuanzhi*,WANG Guilan,et al.Digital Method for Plasma Depositing Complex Metal Part[J].Journal of Wuhan Institute of Technology,2016,38(3):268-292.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 017]
点击复制

等离子熔积复杂金属零件的数字化制造方法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年3期
页码:
268-292
栏目:
机电与信息工程
出版日期:
2016-06-22

文章信息/Info

Title:
Digital Method for Plasma Depositing Complex Metal Part
作者:
胡帮友1罗圆智2*王桂兰3蒋 疆4
1. 化工装备强化与本质安全湖北省重点实验室(武汉工程大学),湖北 武汉 430205;2. 武汉工程大学机电工程学院,湖北 武汉 430205;3. 华中科技大学材料科学与工程学院,湖北 武汉 430074;4. 中国航天科工集团第四研究院,北京 100854
Author(s):
HU Bangyou1 LUO Yuanzhi2* WANG Guilan3 JIANG Jiang4
1. Hubei Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety(Wuhan Institute of Technology), Wuhan 430205, China; 2. School of Mechanical & Electrical Engineering, Wuhan Institute of technology,Wuhan 430205, China; 3. School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 4. The Fourth Academy of China Aerospace Science & Industry Corp. , Beijing 100854, China
关键词:
等离子熔积切片技术轨迹规划实时控制
Keywords:
plasma deposition slicing path generating real-time control
分类号:
TH164
DOI:
10. 3969/j. issn. 1674?2869. 2016. 03. 017
文献标志码:
A
摘要:
针对等离子熔积金属零件工艺特点,提出适应复杂形状金属零件的综合切片技术,包括适应单向生长、多向生长和渐变生长结构的等离子熔积制造需求的切片方法;引入具有全局优化特性的基于Voronoi图方法的轨迹规划技术,同时考虑自行研制的多轴数字化等离子熔积制造平台性能,提出了熔积电流和进给量等制造参数实时控制方法,通过帽形件和中空螺线管制造实验验证了该方法的有效性. 本方法解决了等离子熔积复杂金属零件的支撑工艺问题,并通过再切片方法消除了熔积制造中的阶梯效应,提高了制造精度. 为等离子熔积制造复杂形状金属零件提供了较为完整的数字化理论与技术支持.
Abstract:
Aimed at the characteristics of plasma depositing metal part process, we proposed the combination slicing technology for the complex metal part, including single direction growth, multidirectional growth and gradient growth structure slicing method, to meet the requirement of the hybrid plasma deposition process. Then we introduced the path generation technology with global optimization characteristics based on Voronoi diagram method, and proposed the real-time control method of the plasma deposition current and feeding rate parameters, considering the performance of self-developed multiple axes digital hybrid plasma deposition platform. The effectiveness of the proposed method was verified by the cap shape pieces and hollow solenoid manufacturing experiment. This method solves the supporting process problems of hybrid plasma deposition complex metal parts, and eliminates the staircase effect of plasma deposition process by re-slicing, which improves the manufacturing precision. It provides a relatively complete digital theory and technical support for plasma depositing complex metal part.

参考文献/References:

[1] ZHANG H O, XU J P, WANG G L. Fundamental study on plasma deposition manufacturing [J]. Surface and coatings technology, 2003, 171(1-3):112-118. [2] 张海鸥,吴红军,王桂兰,等.离子熔积直接成形高温合金件组织结构研究[J]. 华中科技大学学报(自然科学版),2005, 33(1): 54-56. ZHANG H O, WU H J, WANG G L. Microstructure of directly formed super alloy by plasma fused-deposition [J]. Journal of Huazhong university of science and technology(nature science edition), 2005, 33(1): 54-56. [3] ZHANG H O, HU S D, WANG G L. Simulation of powder transport in plasma jet via hybrid Lattice Boltzmann method and probabilistic algorithm [J]. Surface and coatings technology, 2006, 201(3-4):886-894. [4] QIAN Y P, ZHANG H O. Direct rapid high-temperature alloy prototyping by hybrid plasma-laser technology[J]. Journal of materials processing technology, 2008, 208(1): 99-104. [5] XIONG X H, ZHANG H O. Metal direct prototyping by using hybrid plasma deposition and milling [J]. Journal of materials processing technology, 2009, 209(1): 124-130. [6] ZHANG H O, HU B Y, WANG G L. A rapid forming method and simulation on controllable-porosity coating [J]. Science in China, series E: technological sciences, 2007, 50(6):786-796. [7] MENG F,?ZHANG H O,?WANG G L,?et al. Heat and mass transfer finite element simulation of clay ceramic prototype in high-temperature drying [J]. Applied mechanics and materials,2011, 128-129: 1147-1150. [8] HELD M. Voronoi diagrams and offset curves of curvilinear polygons [J]. Computer aided design, 1998, 30(4):287-300. [9] M HELD. VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and ling segment [J]. Computational geometry, 2001, 18(2): 95-123. [10] 杨睿,郭东明,徐道明. 理想材料零件数字化制造中的自适应切片算法研究[J]. 中国机械工程, 2003, 14(9): 770-772. YANG R, GUO D M, XU D M,et al. An adaptive slicing algorithm for digital manufacturing of ideal functional material components [J]. China mechanical engineering, 2003, 14(9): 770-772.本文编辑:陈小平

相似文献/References:

备注/Memo

备注/Memo:
更新日期/Last Update: 2016-06-23