|本期目录/Table of Contents|

[1]裴志杰,余荣光,李浩勋,等. 盐湖资源综合利用技术进展 [J].武汉工程大学学报,2025,47(02):119-126.[doi:10.19843/j.cnki.CN42-1779/TQ.202406032]
 PEI Zhijie,YU Rongguang,LI Haoxun,et al. Progress in comprehensive utilization of salt lake resources [J].Journal of Wuhan Institute of Technology,2025,47(02):119-126.[doi:10.19843/j.cnki.CN42-1779/TQ.202406032]
点击复制

盐湖资源综合利用技术进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年02期
页码:
119-126
栏目:
化学与化学工程
出版日期:
2025-05-09

文章信息/Info

Title:
Progress in comprehensive utilization of salt lake resources
文章编号:
1674 - 2869(2025)02 - 0119 - 08
作者:
1.武汉工程大学化工与制药学院,湖北 武汉 430205;
2.国投新疆罗布泊钾盐有限责任公司,新疆 哈密 839000
Author(s):
1. School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China;
2. State Development Investment Corporation Xinjiang Luobupo Potash Co., Ltd, Hami 839000, China
关键词:
Keywords:
分类号:
TS396.1
DOI:
10.19843/j.cnki.CN42-1779/TQ.202406032
文献标志码:
A
摘要:
盐湖作为重要自然资源,蕴含着丰富的无机盐资源,受到全球广泛关注。阐述了近年来国内外对盐湖中钾、镁、锂和硼等盐产品的开发利用现状,系统梳理了浮选法提钾、电解法产镁、沉淀法收锂、酸化法析硼等主流提取工艺,还指出了盐湖产业开发中面临的主要问题,不合理的开采方法导致尾矿堆积和资源品位下降。针对未来盐湖资源的综合利用前景,建议构建智能化生产体系,集成清洁工艺与资源循环技术,重点突破低品位盐湖元素提取设备创新,推动盐湖资源向高效化、低碳化、全元素联产方向转型升级,实现生态保护与资源价值最大化协同发展。
Abstract:
Salt lakes, as critical natural repositories of inorganic salt resources, have attracted global attention due to their strategic mineral reserves. This paper systematically reviews recent advances in exploiting potassium, magnesium, lithium, and boron salt from salt lakes, detailing mainstream extraction methodologies: flotation for potassium, electrolysis for magnesium, precipitation for lithium, and acid leaching for boron. And it further identifies key challenges in salt lake industrial development, particularly suboptimal extraction methods that induce tailings accumulation and a decline in resource quality. To address the future comprehensive utilization of salt lake resources, it is suggested to build an intelligent production system that integrates environmentally benign processes and resource recycling technologies, and focuses on innovative equipment for the extraction of low-grade salt lake elements. This will promote the transition toward high-efficiency, low-carbon, and multi-element co-production paradigms. Such integrated approaches help achieve coordinated development of ecological preservation and resource value maximization in salt lake ecosystems.

参考文献/References:

[1] YAN S M, SUN J Q. Assessing China’s salt lake resources R&D based on bibliometrics analysis[J]. Scientometrics, 2015, 105(2):1141-1155.
[2] 马仁锋,梁贤军,庄佩君. 基于文献计量视角的中国船舶工业及其技术研发动态[J]. 世界科技研究与发展,2014(4):446-452.
[3] 李守江. 罗布泊硫酸盐型盐湖钾盐浮选的理论与工艺研究[D]. 武汉:武汉理工大学, 2019.
[4] CHEN W, GENG Y, HONG J L, et al. Life cycle assessment of potash fertilizer production in China[J]. Resources, Conservation and Recycling, 2018, 138: 238-245.
[5] 胡刚, 刘爽, 周宾, 等. 伊朗霍尔木兹海峡沿岸钾盐矿地质特征、成因分析及提取技术[J]. 矿产综合利用, 2024, 45(1): 8-14.
[6] 李长红, 李海民. 盐湖卤水、海水中钾盐的提取方法、研究现状及发展趋势[J]. 盐湖研究, 2010,18(1): 64-69.
[7] 马凯, 马培华, 王礼龙. 世界钾盐生产贸易现状[J]. 现代化工, 2009,29(12): 82-86.
[8] 鲍荣华, 刘树臣, 闫卫东. 世界钾盐资源分配态势及我们的应对策略[J]. 国土资源情报, 2010(8):44-47.
[9] 邹松, 方霖, 沈善强, 等. 国内外典型硫酸盐型盐湖卤水资源现状及提钾工艺综述[J]. 矿产保护与利用, 2017(5): 113-118.
[10] ABU-HAMATTEH Z S H,AL-AMR A M . Carnallite froth flotation optimization and cell efficiency in the Arab potash company, Dead Sea, Jordan[J]. Mineral Processing and Extractive Metallurgy Review, 2008, 29(3):232-257.
[11] AL-ZOUBI A, BRINK U S T. Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics[J]. Marine & Petroleum Geology, 2001,18(7): 779-797.
[12] SHANI J, SHARON R, KOREN R, et al. Effect of Dead-Sea brine and its main salts on cell growth in culture[J]. Pharmacology, 1987, 35(6):339-347.
[13] GAVRIELI I. Massive-scale dissolution, conveyance, and disposal of Dead Sea Potash Industry Halite waste[J]. Environmental Science & Technology, 2023, 57(22):11.
[14] 陈文祥, 张强, 赵小刚, 等. 察尔汗盐湖钾矿资源利用探讨[J]. 盐科学与化工, 2022,51(8): 50-54.
[15] 谭秀民, 张利珍, 张秀峰. 浅析我国盐湖资源的综合利用[J]. 盐业与化工, 2012,41(5): 5-7.
[16] 程芳琴, 成怀刚, 崔香梅. 中国盐湖资源的开发历程及现状[J]. 无机盐工业, 2011,43(7): 1-4.
[17] 乜贞, 卜令忠, 刘建华, 等. 我国盐湖钾盐资源现状及提钾工艺技术进展[J]. 地球学报, 2010,31(6): 869-874.
[18] 毕秋艳, 党力, 曹海莲, 等. 青海盐湖镁资源开发与利用研究进展[J]. 盐湖研究, 2022,30(1):101-109.
[19] LIN S N, ZHANG T G, FU D X, et al. Utilization of magnesium resources in salt lake brine and catalytic degradation of dye wastewater by doping cobalt and nickel[J]. Separation and Purification Technology,2021,270:118808.
[20] 何扬. 美国大盐湖钾盐生产概况[J]. 化工矿物与加工, 2000(7): 29-30.
[21] TRIPP T G. Production of magnesium from Great Salt Lake, Utah USA[J]. Natural Resources and Environmental Issues, 2009, 15(1): 10.
[22] TRAN K T, HAN K S, KIM S J, et al. Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate[J]. Hydrometallurgy, 2016, 160: 106-114.
[23] TRAN K T, VAN L T, AN J W, et al. Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate[J]. Hydrometallurgy, 2013, 138: 93-99.
[24] 刘国建,杨晓东,李鹏业,等.察尔汗盐湖镁资源在新材料、新能源领域的应用与发展[J].世界有色金属,2024(19):226-228.
[25] 阿旦春. 盐湖镁盐制备镁水泥用活性MgO工艺研究[D]. 西宁:中国科学院大学(中国科学院青海盐湖研究所), 2020.
[26] 汪衢. 基于菱镁矿制备不同性能氧化镁及其对水化产品氢氧化镁的影响[D]. 唐山:华北理工大学, 2022.
[27] ZHANG Y, HU Y H, WANG L, et al. Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J]. Minerals Engineering, 2019, 139: 105868.
[28] 姜小萍, 马龙. 探究青海察尔汗盐湖卤水中钙、镁、锂三种元素提取工艺[J]. 安徽化工, 2019,45(5): 60-63.
[29] YAKSIC A, TILTON J E. Using the cumulative availability curve to assess the threat of mineral depletion: the case of lithium[J]. Resources Policy, 2009,34(4): 185-194.
[30] 王万航. 新型杂多酸类共萃剂用于盐湖卤水萃取提锂的应用基础研究[D]. 北京:北京化工大学, 2022.
[31] MARTHI R, SMITH Y R. Selective recovery of lithium from the Great Salt Lake using lithium manganese oxide-diatomaceous earth composite[J]. Hydrometallurgy, 2019,186: 115-125.
[32] LI Y H, ZHAO Z W, LIU X H, et al. Extraction of lithium from salt lake brine by aluminum-based alloys[J]. Transactions of Nonferrous Metals Society of China, 2015,25(10): 3484-3489.
[33] GAO D L,GUO Y,YU X P, et al. Extracting lithium from the high concentration ratio of magnesium and lithium brine using imidazolium-based ionic liquids with varying alkyl chain lengths [J]. Journal of Chemical Engineering of Japan, 2016,49(2): 104-110.
[34] JI Z Y, CHEN Q B, YUAN J S, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J]. Separation and Purification Technology, 2017, 172: 168-177.
[35] LIMJUCO L A, NISOLA G M, LAWAGON C P, et al. H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504: 267-279.
[36] LEMAIRE J, SVECOVA L, LAGALLARDE F, et al. Lithium recovery from aqueous solution by sorption/desorption[J]. Hydrometallurgy, 2014, 143: 1-11.
[37] AN J W, KANG D J, TRAN K T, et al. Recovery of lithium from Uyuni salar brine[J]. Hydrometallurgy, 2012,117/118(1): 64-70.
[38] KARIDAKIS T, AGATZINI-LEONARDOU S, NEOU-SYNGOUNA P. Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material[J]. Hydrometallurgy, 2005,76(1/2): 105-114.
[39] OGAWA Y , KOIBUCHI H , SUTO K ,et al. Effects of the chemical compositions of salars de uyuni and atacama brines on lithium concentration during evaporation[J]. Resource Geology, 2014, 64(2):91-101.
[40] MARCHINI F, RUBI D, dee POZOM, et al. Surface chemistry and lithium-ion exchange in LiMn2O4 for the electrochemical selective extraction of LiCl from natural salt lake brines[J]. The Journal of Physical Chemistry C,2016,120(29):15875-15883.
[41] JONES B F, NAFTZ D L, SPENCER R J, et al. Geochemical evolution of Great Salt Lake, Utah, USA[J]. Aquatic Geochemistry,2009,15(1/2):95-121.
[42] MARTI R, SMITH Y R. Recovery of lithium from brine with MnO2 nanowire ion sieve composite. Rare Metal Technology[C].Berlin:Springer Group, 2018: 209-214.
[43] 熊增华, 王兴富, 王石军, 等. 青海盐湖锂资源综合利用规模探讨[J]. 盐湖研究, 2020,28(4):125-131.
[44] 白燕祥, 王松博, 国爽, 等. 青海柴达木盆地盐湖资源元素利用及研究现状[J]. 盐科学与化工, 2023,52(3): 1-6.
[45] ZTüRK N E, K SE T E. Boron removal from aqueous solutions by ion-exchange resin: batch studies[J]. Desalination, 2008,227(1/2/3):233-240.
[46] JIANG T, ZHANG Q, LIU Y, et al. Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties[J]. Applied Surface Science, 2016,385(11): 88-98.
[47] WANG B, GUO X, BAI P. Removal technology of boron dissolved in aqueous solutions: a review[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014,444: 338-344.
[48] ENVER G, KAYA C, NALAN K, et al. Boron removal from seawater: state-of-the-art review[J]. Desalination: the International Journal on the Science and Technology of Desalting and Water Purification, 2015,356: 85-93.
[49] KYONG-CHOL K, NAM-IL K, TAO J, et al. Boron recovery from salt lake brine,seawater, and wastewater-a review[J]. Hydrometallurgy, 2023 , 218: 106062.
[50] NISHIHAMA S, SUMIYOSHI Y, OOKUBO T, et al. Adsorption of boron using glucamine-based chelate adsorbents[J]. Desalination, 2013, 310: 81-86.
[51] 程怀德, 张全有, 李海民. 卤水资源开发利用技术述评[J]. 盐湖研究, 2003(3): 51-64.
[52] LIN J Y, MAHASTI N N N, HUANG Y H. Recent advances in adsorption and coagulation for boron removal from wastewater: a comprehensive review[J]. Journal of Hazardous Materials, 2021, 407: 124401.
[53] JAMIS P, MUHR H, PLASARI E. Boron removal from waste solutions using a multiophase co-precipitation process[J]. Chemical Engineering Transactions, 2002, 1: 671-676.
[54] IRAWAN C, KUO Y L, LIU J C. Treatment of boron-containing optoelectronic wastewater by precipitation process[J]. Desalination, 2011, 280(1/2/3): 146-151.
[55] TSAI H C, LO S L, KUO J. Using pretreated waste oyster and clam shells and microwave hydrothermal treatment to recover boron from concentrated wastewater[J]. Bioresource Technology, 2011, 102(17): 7802-7806.
[56] 韩井伟. 从提锂后盐湖卤水中萃取提硼的新工艺研究[D]. 西宁:中国科学院研究生院(青海盐湖研究所), 2007.
[57] 施春辉, 王立林, 吕品, 等. 我国硼酸生产现状及发展建议[J]. 当代化工, 2018,47(9): 1948-1951.
[58] 张生宝, 姜维帮, 李顺营. 盐湖卤水提硼技术[J]. 河南化工, 2010,27(20): 20-21.


相似文献/References:

[1]李紫谦,黄志良*,孟 鹏,等.氧化法从水云母中提钾及其机理[J].武汉工程大学学报,2015,37(09):40.[doi:10. 3969/j. issn. 1674-2869. 2015. 09. 007]
 ,,et al.Extracting potassium from hydromica by oxidation method and its mechanism[J].Journal of Wuhan Institute of Technology,2015,37(02):40.[doi:10. 3969/j. issn. 1674-2869. 2015. 09. 007]
[2]刘存成,马家玉,覃远航,等.表面活性剂对磷钾伴生矿中钾浸出的影响[J].武汉工程大学学报,2017,39(06):536.[doi:10. 3969/j. issn. 1674?2869. 2017. 06. 003]
 LIU Cuncheng,MA Jiayu,QIN Yuanhang,et al.Effect of Surfactants on Leaching of Potassium from Phosphorus-Potassium Associated Ore[J].Journal of Wuhan Institute of Technology,2017,39(02):536.[doi:10. 3969/j. issn. 1674?2869. 2017. 06. 003]
[3]姚东辉,黄志良*,李紫谦,等.氧化-柱撑/离子交换法水云母中的提钾研究[J].武汉工程大学学报,2017,39(06):607.[doi:10. 3969/j. issn. 1674?2869. 2017. 06. 014]
 YAO Donghui,HUANG Zhiliang*,LI Ziqian,et al.Extracting Potassium from Hydromica by Oxidation-Pillar/Ion Exchange Method[J].Journal of Wuhan Institute of Technology,2017,39(02):607.[doi:10. 3969/j. issn. 1674?2869. 2017. 06. 014]
[4]程怡林,黄志良*,姚东辉,等.钠离子交换法从黑云母中提钾及水钠云母的电化学性能[J].武汉工程大学学报,2020,42(04):420.[doi:10.19843/j.cnki.CN42-1779/TQ.201909018]
 CHENG Yilin,HUANG Zhiliang*,YAO Donghui,et al.Potassium Extraction from Biotite by Sodium Ion Exchange and Electrochemical Properties of Hydrated Sodium Mica[J].Journal of Wuhan Institute of Technology,2020,42(02):420.[doi:10.19843/j.cnki.CN42-1779/TQ.201909018]

备注/Memo

备注/Memo:
收稿日期:2024-06-26
基金项目:武汉工程大学第十五届研究生教育创新基金(CX2023020)
作者简介:裴志杰,硕士研究生。Email:pei1790777101@163.com
*通信作者:侯建华,高级工程师。Email:lbphjh@126.com
引文格式:裴志杰,余荣光,李浩勋,等.盐湖资源综合利用技术进展[J]. 武汉工程大学学报,2025,47(2):119-126,186.
更新日期/Last Update: 2025-05-08