|本期目录/Table of Contents|

[1]张宇航,孙艳娟,徐 瑾,等.超薄类石墨相氮化碳纳米片剥离技术的研究进展[J].武汉工程大学学报,2017,39(03):223-230.[doi:10. 3969/j. issn. 1674?2869. 2017. 03. 004]
 ZHANG Yuhang,SUN Yanjuan,XU Jin,et al.Research Progress in Exfoliation Technology of Ultrathin Graphite Carbon Nitride Nanosheets[J].Journal of Wuhan Institute of Technology,2017,39(03):223-230.[doi:10. 3969/j. issn. 1674?2869. 2017. 03. 004]
点击复制

超薄类石墨相氮化碳纳米片剥离技术的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年03期
页码:
223-230
栏目:
材料科学与工程
出版日期:
2017-06-24

文章信息/Info

Title:
Research Progress in Exfoliation Technology of Ultrathin Graphite Carbon Nitride Nanosheets
文章编号:
20170304
作者:
张宇航孙艳娟徐 瑾杨 梅张欢欢刘 忆吴生丽邹 菁*
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
ZHANG YuhangSUN YanjuanXU JinYANG MeiZHANG HuanhuanLIU YiWU ShengliZOU Jing*
School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205, China
关键词:
类石墨相氮化碳超薄纳米片剥离制备
Keywords:
graphite carbon nitrideultrathin nanosheets exfoliation preparation
分类号:
TQ050.4+2
DOI:
10. 3969/j. issn. 1674?2869. 2017. 03. 004
文献标志码:
A
摘要:
超薄二维(2D)纳米材料,因其优异的电子、光学、物理和化学性能,以及各种潜在应用,在纳米技术、材料科学、化学和凝聚态物理等领域迅速发展. 类石墨相氮化碳(g-C3N4)是一类主要由碳和氮原子组成的2D聚合物材料,但块状g-C3N4比表面积小、分散性差严重影响其在光催化领域的应用. 因此,人们常采用剥离方法制备超薄g-C3N4纳米片. 本文主要详述了目前常用的热氧化剥离、超声辅助液相剥离和酸碱化学剥离等方法的现状及机理,并讨论了超薄g-C3N4纳米片未来的重点研究方向.
Abstract:
Research on ultrathin two-dimensional (2D) nanomaterials has made great progress in the fields of nanotechnolog,material science,chemistry and condensed matter physics due to their compelling electronic,optical,physical and chemical properties,as well as their various potential applications. Graphite carbon nitride (g-C3N4) is a type of 2D polymeric materials mainly composed of carbon and nitrogen atoms. But bulk g-C3N4 possesses small specific?surface?area?and the poor dispersity,which seriously affects its application in the field of photocatalysis. Therefore,the researchers fabricate the ultrathing-C3N4 nanosheets by the exfolication method. The existing state and affairs and mechanism of thermal oxidation exfoliation method,ultrasonic auxiliary liquid exfoliation method,chemical exfoliation method with acid and alkali are reviewed. The future perspective for developing the ultrathing-C3N4nanosheets is discussed.

参考文献/References:

[1] CHAI B,PENG T Y,MAO J,et al. Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation[J]. Physical Chemistry Chemical Physics,2012,14(48):16745-16752. [2] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Hemical Society Reviews,2009,38(1):253-278. [3] LIU A Y,COHEN M L. Prediction of new low compressibility solid[J]. Science,1989,245(4920):841-842. [4] TETER D M, HEMLEY R J.Low-compressibility- carbon nitride[J]. Science,1996,271(5245):53-55. [5] JI H,CHANG F,HU X,et al. Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation[J]. Chemical Engineering Journal,2013,218(4):183-190. [6] WANG Y,WANG X C,ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry antonietti[J]. Angewandte Chemie International Edition,2012,51(1):68-89. [7] NIU C M,LU Y Z,LIEBER C M. Experimental realization of the covalent solid carbon nitride[J]. Science,1993,261(5119):334-337. [8] NESTING D C,BADDING J V. Hing-pressure synthesis of sp2-bonded carbon nitrides[J]. Chemical of Materials,1996,8(7): 1535-1539. [9] LI C,YANG X G,YANG B,et al. Synthesis and characterization of nitrogen-rich graphitic carbon nitride[J]. Chemical and Physics,2007,103(2/3):427-432. [10] 李超,曹传宝,朱鹤孙. 电化学沉积法制备类石墨相氮化碳[J]. 材料通报,2003,48(9):905-908. LI C,CAO C B,ZHU H S. Preparation of graphite phase carbonitride by electrochemical deposition [J]. Material Notification,2003,48(9):905-908. [11] JUN Y S,HONG W H,ANTONIETTI M,et al. Mesoporous,2D hexagonal carbon nitrid and titanium nitride/carbon composites [J]. Advanced Materials,2009,21(42):4270-4274. [12] LU L Q,ZHU Y C,SHI C,et al. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation[J]. Carbon,2016,?109:373-383. [13] GAO H Y,XUE C,HU G X,et al. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2 /H2O medium[J]. Ultrasonics Sonochemistry,?2017,?37:120-127. [14] ZHANG X R,MENG Z S,RAO D W,et al. Efficient band structure tuning,charge separation,and visible-light response in ZrS2-Based vander waals heterostructures[J]. Energy & Environmental Science,2016,9(3): 841-849. [15] BERGIN S D,SUN Z Y,RICKARD D,et al. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures[J]. ACS Nano,2009,3(8):2340-2350. [16] COLEMAN J N,LOTYA M,O’NEILL,et al. Two-dimensional nanosheetsproduced by liquid exfoliation of layered materials[J]. Science,2011,311(6017):568-571. [17] ZHAO H X,YU H T, QUAN X, et al. Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation[J]. RSC Advances,2014,4(2):624-628. [18] YANG S B,GONG Y J,ZHANG J S,et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Matericals,2013,25(17):2452-2456. [19] SHE X J,XU H,XU Y G,et al. Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+[J]. Journal of Materials Chemistry A,2014,2(8):2563-2570. [20] ZHAO H X,YU H T,QUAN X,et al. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation[J]. Applied Catalysis B:Environmental,2014,152/153:46-50. [21] LIN Q Y,LI L,LIANG S J,et al. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities[J]. Applied Catalysis B:Environmental,2015,163:135-142. [22] ZHANG X D,XIE X,WANG H,et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society,2013,135:18-21. [23] SCHWINGHAMMER K, MESCH B M, DUPPEL V,et al. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution[J]. Journal of the American Chemical Society,2014,136(5):1730-1733. [24] GU Q, GAO Z W,ZHAO H A,et al. Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light[J]. RSC Advances,2015,5 (61):49317-49325. [25] NIU P, ZHANG L L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials,2012,22(22):4763-4770. [26] NIU P,YIN L C,YANG Y Q,et al. Increasing the visible light absorption of graphitic carbon nitride(melon) photocatalysts by homogeneous self- modification with nitrogen vacancies[J]. Advanced Matericals,2014,26(47):8046-8052. [27] TAY Q L,KANHERE P,NG C F,et al. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production[J]. Chemical Matericals,2015,27(14):4930-4933. [28] QIU P X,CHEN H,XU C M,et al. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst[J]. Journal of Materials Chemistry A,2015,3(48):24237-24244. [29] WU C Z,LU X L,XU K,et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. Materials Chemistry A,2014,2(44):18924-18928. [30] XU H,YAN J,SHE X J,et al. Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+[J].Nanoscale,2014,6(3):1406-1415. [31] LIANG Q H,LI Z,HUANG Z H,et al. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production[J]. Advanced Functional Materials,2015,25(44):6885-6892. [32] SANO T,TSUTSUI S,KOIKE K,et al. Activation of graphitic carbon nitride(g-C3N4)by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. Materials Chemistry A,2013,1(21):6489-6496. [33] ZHANG X D,WANG H X,WANG H,et al. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus[J]. Advanced Materials,2014,26(26):4438-4443. [34] XU Y G,XIE M,HUANG S Q,et al. High yield synthesis of nano-size g-C3N4 derivatives by a dissolve-regrowth method with enhanced photocatalytic ability[J]. RSC Advances,2015,5(33):26281- 26290. [35] CHEN L C,HUANG D J,REN S Y,et al. Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity[J]. Nanoscale,2013,5(1):225-230. [36] CHENG F X,WANG H N,DONG X P. The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route[J]. Chemical Communications,2015,51(33):7176-7179.

相似文献/References:

[1]覃 鑫,桂子欣,江梦云,等.煅烧温度对类石墨相氮化碳的结构和电化学性能的影响[J].武汉工程大学学报,2022,44(05):528.[doi:10.19843/j.cnki.CN42-1779/TQ.202107015]
 QIN Xin,GUI Zixin,JIANG Mengyun,et al.Effect of Calcination Temperature on Structure and Electrochemical?Properties of Graphite Carbon Nitride[J].Journal of Wuhan Institute of Technology,2022,44(03):528.[doi:10.19843/j.cnki.CN42-1779/TQ.202107015]

备注/Memo

备注/Memo:
收稿日期:2017-03-21基金项目:国家自然科学基金(21471122);武汉工程大学第十一期大学生校长基金(2016062)作者简介:张宇航,本科生. E-mail:1546152275@qq.com
更新日期/Last Update: 2017-06-22