|本期目录/Table of Contents|

[1]吕全红,肖莲珍*.基于水化动力学模型的水泥基材料温度效应[J].武汉工程大学学报,2020,42(04):434-438.[doi:10.19843/j.cnki.CN42-1779/TQ.201910011]
 Lu Quanhong,XIAO Lianzhen*.Temperature Effect of Cement-Based Materials Based on Hydration Kinetics Model[J].Journal of Wuhan Institute of Technology,2020,42(04):434-438.[doi:10.19843/j.cnki.CN42-1779/TQ.201910011]
点击复制

基于水化动力学模型的水泥基材料温度效应(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年04期
页码:
434-438
栏目:
材料科学与工程
出版日期:
2021-01-28

文章信息/Info

Title:
Temperature Effect of Cement-Based Materials Based on Hydration Kinetics Model
文章编号:
1674 - 2869(2020)04 - 0434 - 05
作者:
吕全红肖莲珍*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
Lu Quanhong XIAO Lianzhen*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
水泥浆温度Krstulovic-Dabic模型水化度活化能
Keywords:
cement pastestemperature Krstulovic-Dabic model hydration degree activation energy
分类号:
TQ172
DOI:
10.19843/j.cnki.CN42-1779/TQ.201910011
文献标志码:
A
摘要:
为探究温度对水泥浆水化过程的影响,采用等温量热仪测试了水泥浆样品在20,30和40 ℃的水化放热量和水化放热速率,获得了水化度α和表观活化能Ea并利用Krstulovic-Dabic模型计算了相应阶段动力学参数K和n,探讨不同温度的水泥浆体的水化机理。结果表明,水化动力学参数随温度升高显著增大,水泥浆在20~40 ℃的水化表观活化能Ea为37.63 kJ/mol,且升高温度促进0~72 h内水泥水化度的增长。20 ℃下的水泥浆具有NG-I-D过程,而30 ℃和40 ℃下的水泥浆只具有NG-D过程,表明升高温度使水化阶段的持续时间缩短,且反应速率加快。研究可为水泥基材料在不同环境温度下施工时控制浇筑时间以及掌握强度的发展趋势,提供一定的理论依据。
Abstract:
The rates of hydration heat evolution and hydration heat of cement paste samples were determined at 20,30 and 40 ℃ respectively to investigate the effect of temperature on the hydration process of cement pastes by an isothermal calorimeter during 72 h. The hydration degree [α] and the apparent activation energy Ea were obtained,and the hydration kinetic parameters K and n were calculated according to the Krstulovic-Dabic models for the corresponding stages,revealing the hydration mechanism of the cement pastes at different temperatures. The results show that the hydration kinetic parameters increase significantly with the increase of temperatures,and the apparent activation energy Ea of the cement pastes is 37.63 kJ/mol at 20-40 ℃,moreover,a higher temperature promotes the cement hydration degree within 0-72 h. The hydration of cement paste has an NG-I-D process at 20 ℃,while the hydration of cement paste has only the NG-D process at both 30 ℃ and 40 ℃,indicating that the period of cement hydration was shorter and the hydration rate became faster with the increase of temperature. The research results can provide theoretical basis for site workers to control casting time and predicting strength during the construction of cement-based materials at various temperatures.

参考文献/References:

[1] 杨光,殷颖迪,刘冰宇,等. 不同养护制度对普通硅酸盐水泥基三元胶凝体系力学性能及变形的影响[J].粉煤灰综合利用,2019(1):28-32.[2] BA?ANT Z P,JIRáSEK M. Temperature effect on waterdiffusion,hydration rate,creep and shrinkage [M]/Creep and Hygrothermal Effects in Concrete Structures.Dordrecht,The Netherlands:Springer Nature,2018:607-686.[3] WANG F,XU M H,WANG R H,et al. Effect of high temperature process on microstructure and properties of industrial steel slag cement [J]. Key Engineering Materials,2019,814:413-418.[4] 熊鲲,吴小斌,徐少波,等. 大体积超高性能混凝土温控措施及施工监测[J]. 水泥工程,2019(3):86-89.[5] 张海明,潘乐,荣华,等. 某“华龙一号”核电站核岛基础大体积混凝土施工裂缝控制[J]. 工业建筑,2019,49(2):27-30.[6] 冯楚桥,余晓敏,常晓林,等. 混凝土水化化学反应动力学模型的推导及应用[J]. 中国农村水利水电,2019(1):152-157.[7] 李林香,谢永江,冯仲伟,等. 水泥水化机理及其研究方法[J]. 混凝土,2011(6):76-80.[8] 韩方晖,王栋民,阎培渝. 含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学[J]. 硅酸盐学报,2014,42(5):613-620.[9] KRSTULOVI? R,DABI? P. A conceptual model of the cement hydration process [J]. Cement and Concrete Research,2000,30(5):693-698.[10] 阎培渝,郑峰. 水泥基材料的水化动力学模型[J].硅酸盐学报,2006,34(5):555-559.[11] 朱鹏飞,宫经伟,唐新军. 大体积混凝土胶凝材料体系水化放热规律研究[J]. 长江科学院院报,2018,35(6):111-116.[12] 党晗菲,谢清泉,于连山,等. 基于Krstulovic-Dabic模型的复合胶凝体系水化特性研究[J]. 硅酸盐通报,2019,38(3):722-728.[13] 张旭龙. 水泥基材料水化热动力学研究[D]. 武汉:武汉理工大学,2011.[14] WANG P M,LI N,XU L L. Hydration evolution and compressive strength of calcium sulphoaluminate cement constantly cured over the temperature range of 0 to 80 ℃[J]. Cement and Concrete Research,2017,100:203-213.[15] NARMLUK M,NAWA T. Effect of fly ash on the kinetics of Portland cement hydration at different curingtemperatures[J].CementandConcreteResearch,2011,41(6):579-589.[16] 魏小胜,肖莲珍. 电阻率法测定硅酸盐水泥水化活化能[J]. 硅酸盐学报,2011,39(4):676-681.

相似文献/References:

[1]赵振华.橡胶硫化温度的模糊控制[J].武汉工程大学学报,2008,(04):93.
 ZHAO Zhen hua.Fuzzy control of vulcanization temperature[J].Journal of Wuhan Institute of Technology,2008,(04):93.
[2]袁江,胡明辅*,毕二朋,等.湿空气饱和水蒸气压数学计算式的拟合与优选[J].武汉工程大学学报,2011,(10):25.
 YUAN Jiang,HU Ming fu,BI Er peng,et al.Formulas fitting and optimizing of saturated watervapor pressure of moist air[J].Journal of Wuhan Institute of Technology,2011,(04):25.
[3]许钢,林园胜,胡天水,等.虚拟仪器技术在温度采集系统中的应用[J].武汉工程大学学报,2013,(07):81.[doi:103969/jissn16742869201307016]
 XU Gang,LIN Yuan sheng,HU Tian shui,et al.Application of virtual instrument technologyin temperature acquisition system[J].Journal of Wuhan Institute of Technology,2013,(04):81.[doi:103969/jissn16742869201307016]
[4]周剑秋,叶志雄,邱奇,等.温度与应变率对Cu70 Zn30孪晶变形的影响[J].武汉工程大学学报,2014,(05):42.[doi:103969/jissn16742869201405010]
 ZHOU Jian qiu,YE Zhi xiong,QIU Qi,et al.Effects of strain rate and temperature on deformation twinning in Cu70Zn30 alloy[J].Journal of Wuhan Institute of Technology,2014,(04):42.[doi:103969/jissn16742869201405010]
[5]刘 岑,杨 帆,刘 兵,等.室温与超低温时奥氏体不锈钢S30408的屈强比[J].武汉工程大学学报,2018,40(02):228.
 LIU Cen,YANG?Fan,LIU Bing,et al.Austenitic Stainless Steel S30408 Yield Ratio at Room Temperature and Ultra-Low Temperature[J].Journal of Wuhan Institute of Technology,2018,40(04):228.
[6]王振鹏,黄民水*,卢海林.基于振动监测的工字钢梁温度-频率关系模型[J].武汉工程大学学报,2020,42(03):321.[doi:10.19843/j.cnki.CN42-1779/TQ.201912012]
 WANG Zhenpeng,HUANG Minshui*,LU Hailin.Model of Frequency Versus Temperature of Steel I-Beam Based on Vibration Monitoring[J].Journal of Wuhan Institute of Technology,2020,42(04):321.[doi:10.19843/j.cnki.CN42-1779/TQ.201912012]
[7]程凯旋,杨加美,丁珮珊,等.高密度聚乙烯垫片的非线性压缩-回弹性能测试[J].武汉工程大学学报,2021,43(04):468.[doi:10.19843/j.cnki.CN42-1779/TQ. 202105019]
 CHENG Kaixuan,YANG Jiamei,DING Peishan,et al.Nonlinear Compression-Resilience Performance Test of HDPE Gaskets[J].Journal of Wuhan Institute of Technology,2021,43(04):468.[doi:10.19843/j.cnki.CN42-1779/TQ. 202105019]
[8]雷 德,蔡 璐*.压缩二氧化碳和甲基吡咯烷酮剥离石墨烯的分子动力学模拟[J].武汉工程大学学报,2023,45(01):48.[doi:10.19843/j.cnki.CN42-1779/TQ.202201006]
 LEI De,CAI Lu*.Molecular Dynamics Simulation of Graphene Exfoliation in MixedSolvent of Compressed Carbon Dioxide and Methylpyrrolidon[J].Journal of Wuhan Institute of Technology,2023,45(04):48.[doi:10.19843/j.cnki.CN42-1779/TQ.202201006]
[9]江志豪,文小玲*,舒李俊.水产养殖水域的溶解氧浓度检测方法研究[J].武汉工程大学学报,2023,45(02):196.[doi:10.19843/j.cnki.CN42-1779/TQ.202210023]
 JIANG Zhihao,WEN Xiaoling*,SHU Lijun.Detection Method of Dissolved Oxygen Concentration in Aquaculture Waters[J].Journal of Wuhan Institute of Technology,2023,45(04):196.[doi:10.19843/j.cnki.CN42-1779/TQ.202210023]

备注/Memo

备注/Memo:
收稿日期:2019-10-11基金项目:国家自然科学基金(51778257)作者简介:吕全红,硕士研究生。E-mail: 13419507001@163.com*通讯作者:肖莲珍,博士,教授。E-mail: 279997095@qq.com引文格式:吕全红,肖莲珍. 基于水化动力学模型的水泥基材料温度效应[J]. 武汉工程大学学报,2020,42(4):434-438.
更新日期/Last Update: 2020-08-13