|本期目录/Table of Contents|

[1]李 剑,杨 凯,江秋月,等.聚丙烯酸黏结剂的分子量对氧化亚硅负极性能的影响[J].武汉工程大学学报,2023,45(06):635-640.[doi:10.19843/j.cnki.CN42-1779/TQ.202212004]
 LI Jian,YANG Kai,JIANG Qiuyue,et al.Effect of Molecular Weight of Polyacrylic Acid Binders onProperties of Silicon Suboxide Anode[J].Journal of Wuhan Institute of Technology,2023,45(06):635-640.[doi:10.19843/j.cnki.CN42-1779/TQ.202212004]
点击复制

聚丙烯酸黏结剂的分子量对氧化亚硅负极性能的影响(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年06期
页码:
635-640
栏目:
材料科学与工程
出版日期:
2023-12-28

文章信息/Info

Title:
Effect of Molecular Weight of Polyacrylic Acid Binders on
Properties of Silicon Suboxide Anode
文章编号:
1674 - 2869(2023)06 - 0635 - 06
作者:
李 剑1杨 凯2江秋月2雷晓华2郭庆中*1刘志宏*2
1. 武汉工程大学材料科学与工程学院,湖北 武汉 430205;
2. 光电化学材料与器件教育部重点实验室(江汉大学),湖北 武汉 430056
Author(s):
LI Jian1YANG Kai2JIANG Qiuyue2LEI Xiaohua2GUO Qingzhong*1LIU Zhihong*2
1. School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205, China;
2. Key Laboratory of Optoelectronic Chemical Materials and Devices(Jianghan University),Ministry of Education,
Wuhan 430056, China
关键词:
氧化亚硅负极材料聚丙烯酸黏结剂
Keywords:
silicon suboxide anode material polyacrylic acid binder
分类号:
O646
DOI:
10.19843/j.cnki.CN42-1779/TQ.202212004
文献标志码:
A
摘要:
硅基负极材料因在嵌锂-脱锂过程中会产生剧烈的体积膨胀,限制了其在构建高能量密度锂离子电池中的应用。聚丙烯酸(PAA)作为一种高性能硅基负极黏结剂,倍受关注。采用不同黏均分子量的PAA黏结剂制备氧化亚硅电极,并测试了其溶胀性、力学性能和电化学性能。黏结剂PAA的黏均分子量为400万时,以0.4 A/g的电流密度循环100圈后,电池的容量保持率为88.4%,可逆比容量为1 017 (mA·h)/g,高于黏均分子量为45万、125万的PAA黏结剂时的602 (mA·h)/g和793.9 (mA·h)/g的可逆比容量。结果表明:黏结剂PAA的分子量增大,其溶胀性能、弹性模量、硬度得到提升,抑制氧化亚硅负极膨胀的能力得到增强,有利于构建更稳固的固态电解质界面膜,从而提升氧化亚硅电极的循环倍率性能。

Abstract:
The application of silicon-based anode materials for high energy density lithium-ion batteries is limited due to its huge volume expansion during the lithiation/delithiation process. Polyacrylic acid (PAA),as a high-performance silicon-based anode binder,has attracted much attention. Silicon suboxide electrodes were prepared by using PAA binders with different average molecular weights,and their swelling,mechanical and electrochemical properties were tested. When the viscosity-average molecular weight of PAA binder is 4 million,the capacity retention rate of the battery is 88.4%,and the reversible specific capacity is 1 017 (mA·h)/g at a current density of 0.4 A/g after 100 cycles,which is higher than the reversible specific capacity of 602 and 793.9 (mA·h)/g when the viscosity-average molecular weights of the PAA binders are 4.5×105 and 1.25×106,respectively. The results show that the swelling property,elastic modulus and hardness of PAA are improved and the ability to inhibit expansion of silicon suboxide anode is strengthened with the increase of molecular weight of PAA,which is conducive to establishing more stable solid electrolyte interface layer and improving the cycle and rate performance of silicon suboxide anode.

参考文献/References:

[1] LIAO H J,LIU N,HE W J,et al. Three-dimensional cross-linked binder based on ionic bonding for a high-performance SiOx anode in lithium-ion batteries [J]. ACS Applied Energy Materials,2022,5(4):4788-4795.

[2] 刘丹阳,王升高,马元,等. 泡沫碳@SnO2复合材料的制备及电化学性能[J]. 武汉工程大学学报,2020,42(3):307-311.
[3] 袁华,何云蔚,艾常春. 钛酸锂作为锂离子电池负极材料的改性进展[J]. 武汉工程大学学报,2014,36(8):20-26.
[4] LIU S J, CHENG S K, XIE M, et al. A delicately designed functional binder enabling in situ construction of 3D cross-linking robust network for high-performance Si/graphite composite anode [J]. Journal of Polymer Science,2022,60(12):1835-1844.
[5] YANG J,TAKEDA Y,IMANISHI N,et al. SiOx-based anodes for secondary lithium batteries [J]. Solid State Ionics,2002,152/153:125-129.
[6] WU S X,YANG Y J ,LIU C B, et al. In-situ polymerized binder:a three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries [J]. ACS Energy Letters,2021,6(1):290-297.
[7] LI G,LI J Y,YUE F S,et al. Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries [J]. Nano Energy,2019,60:485-492.
[8] YAO N N,ZHANG Y,RAO X H,et al. A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries [J]. International Journal of Minerals,Metallurgy and Materials,2022,29(4):876-895.
[9] TIAN H, TIAN H J,YANG W,et al. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries [J]. Advanced Functional Materials,2021,31(25):2101796:1-14.
[10] XU Q, SUN J K, YIN Y X, et al. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes [J]. Advanced Functional Materials,2018,28(8):1705235:1-7.
[11] ZHANG Q,ZHANG F Y,ZHANG M,et al. A highly efficient silicone-modified polyamide acid binder for silicon-based anode in lithium-ion batteries [J]. ACS Applied Energy Materials,2021,4(7):7209-7218.
[12] HU L L,ZHANG X D,ZHAO P Y,et al. Gradient H-bonding binder enables stable high-areal-capacity Si-based anodes in pouch cells [J].Advanced Materials,2021,33(52):2104416:1-9.
[13] XU Y H,YIN G P,MA Y L,et al. Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder [J]. Journal of Power Sources,2010,195(7):2069-2073.
[14] GONG L Y,NGUYEN M H T,OH E S. High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries [J]. Electrochemistry Communications,2013,29:45-47.
[15] WENG Z, DI S H, CHEN L, et al. Random copolymer hydrogel as elastic binder for the SiOx microparticle anode in lithium-ion batteries [J]. ACS Applied Materials & Interfaces,2022,14(37):42494- 42503.
[16] CHEN H, LING M, HENCZ L, et al. Exploring chemical,mechanical,and electrical functionalities of binders for advanced energy-storage devices [J]. Chemical Reviews,2018,118(18):8936-8982.
[17] LI Z H,TANG W T,YANG Y J,et al. Engineering prelithiation of polyacrylic acid binder:a universal strategy to boost initial coulombic efficiency for high-areal-capacity Si-based anodes [J]. Advanced Functional Materials,2022,32(40):2206615:1-13.
[18] BRESSER D,BUCHHOLZ D, MORETTI A,et al. Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers [J]. Energy & Environmental Science,2018,11(11):3096-3127.
[19] KOVALENKO I, ZDYRKO B, MAGASINSKI A,et al. A major constituent of brown algae for use in high-capacity Li-ion batteries [J]. Science,2011,334(6052):75-79.
[20] LEE S H, LEE J H, NAM D H, et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery [J]. ACS Applied Materials & Interfaces,2018,10(19):16449-16457.
[21] KAUR S,SANTRA S. Application of guar gum and its derivatives as green binder/separator for advanced lithium-ion batteries [J]. Chemistry Open,2022,11(2):e202100209:1-14.
[22] SONG J X,ZHOU M J,YI R,et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries [J]. Advanced Functional Materials,2014,24(37):5904-5910.
[23] WU Z Y,DENG L,LI J T,et al. Multiple hydrogel alginate binders for Si anodes of lithium-ion battery [J]. Electrochimica Acta,2017,245:371-378.
[24] LUO C,WU X F,ZHANG T,et al. A four-armed polyacrylic acid homopolymer binder with enhanced performance for SiOx/graphite anode [J]. Macromolecular Materials and Engineering,2021,306(1):2000525:1-8.
[25] JIAO X X,YIN J Q,XU X Y,et al. Highly energy-dissipative,fast self-healing binder for stable Si anode in lithium-ion batteries [J]. Advanced Functional Materials,2021,31(3):2005699:1-7.
[26] ASSRESAHEGN B D,BéLANGER D. Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives [J]. Journal of Power Sources,2017,345:190-201.
[27] LIU D,ZHAO Y,TAN R,et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries [J]. Nano Energy,2017,36:206-212.
[28] 李杨,张娜. 动力锂离子电池循环后的性能分析[J]. 电池,2016,46(1):28-30.
[29] YANG X L,WEN Z Y,XU X X,et al. Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries [J]. Journal of Power Sources,2007,164(2):880-884.
[30] LI Z H,WAN Z W,WU G,et al. A biopolymer network for lean binder in silicon nanoparticle anodes for lithium-ion batteries [J]. Sustainable Materials and Technologies,2021,30:e00333:1-8.

相似文献/References:

[1]池汝安,陈志伟,路莎莎.负极材料四氧化三钴的液相沉淀法制备及其性能[J].武汉工程大学学报,2014,(04):7.[doi:103969/jissn16742869201404002]
 CHI Ru an,CHEN Zhi wei,LU Sha sha.Preparation and characterization of cobalt oxide anode materials synthesized by liquid precipitation method[J].Journal of Wuhan Institute of Technology,2014,(06):7.[doi:103969/jissn16742869201404002]
[2]刘丹阳,王升高*,马 元,等.泡沫碳@SnO2复合材料的制备及电化学性能[J].武汉工程大学学报,2020,42(03):307.[doi:10.19843/j.cnki.CN42-1779/TQ.201912008]
 LIU Danyang,WANG Shenggao*,MA Yuan,et al.Preparation and Electrochemical Performances of Carbon Foam@SnO2 Composites[J].Journal of Wuhan Institute of Technology,2020,42(06):307.[doi:10.19843/j.cnki.CN42-1779/TQ.201912008]
[3]邓淏天,王学华*,石胜伟,等.锌溴电池电解液及电极材料研究进展[J].武汉工程大学学报,2024,46(01):27.[doi:10.19843/j.cnki.CN42-1779/TQ.202304009]
 DENG Haotian,WANG Xuehua*,SHI Shengwei,et al.Research progress in electrolyte and electrode materials forzinc-bromine batteries[J].Journal of Wuhan Institute of Technology,2024,46(06):27.[doi:10.19843/j.cnki.CN42-1779/TQ.202304009]

备注/Memo

备注/Memo:
收稿日期:2022-12-04
基金项目:国家自然科学基金(51872127,22139001);湖北省重点研发计划项目(2020BAA030)
作者简介:李 剑,硕士研究生。E-mail:1844945827@qq.com
*通讯作者:郭庆中,博士,教授。E-mail:ggg602@sina.com;刘志宏,博士,教授。E-mail:liuzh@jhun.edu.cn
引文格式:李剑,杨凯,江秋月,等. 聚丙烯酸黏结剂的分子量对氧化亚硅负极性能的影响[J]. 武汉工程大学学报,2023,45(6):635-640.
更新日期/Last Update: 2023-12-25